Asya Viraneva;Maria Marudova;Bissera Pilicheva;Aleksandar Grigorov;Nikolay Zahariev;Sofia Milenkova;Temenuzhka Yovcheva
{"title":"聚电解质多层包埋的苯胺负载酪蛋白纳米球","authors":"Asya Viraneva;Maria Marudova;Bissera Pilicheva;Aleksandar Grigorov;Nikolay Zahariev;Sofia Milenkova;Temenuzhka Yovcheva","doi":"10.1109/TDEI.2025.3542349","DOIUrl":null,"url":null,"abstract":"Polyelectrolyte multilayers (PEMs) films containing benzydamine hydrochloride (Benz)-loaded casein nanoparticles are developed aiming to increase the structure drug loading efficiency and to prolong the drug release. The multilayers are built on biodegradable polyester substrates, which are previously charged in a corona discharge. Medium viscosity sodium alginate (SA) is used as a partner in the multilayer formulation. The SA and the casein nanoparticles are deposited on the substrate using the layer-by-layer (LbL) deposition technique. The drug loading efficiency and the release kinetics in artificial saliva are determined spectrophotometrically.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 3","pages":"1599-1605"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benzydamine-Loaded Casein Nanospheres Embedded in Polyelectrolyte Multilayers\",\"authors\":\"Asya Viraneva;Maria Marudova;Bissera Pilicheva;Aleksandar Grigorov;Nikolay Zahariev;Sofia Milenkova;Temenuzhka Yovcheva\",\"doi\":\"10.1109/TDEI.2025.3542349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyelectrolyte multilayers (PEMs) films containing benzydamine hydrochloride (Benz)-loaded casein nanoparticles are developed aiming to increase the structure drug loading efficiency and to prolong the drug release. The multilayers are built on biodegradable polyester substrates, which are previously charged in a corona discharge. Medium viscosity sodium alginate (SA) is used as a partner in the multilayer formulation. The SA and the casein nanoparticles are deposited on the substrate using the layer-by-layer (LbL) deposition technique. The drug loading efficiency and the release kinetics in artificial saliva are determined spectrophotometrically.\",\"PeriodicalId\":13247,\"journal\":{\"name\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"volume\":\"32 3\",\"pages\":\"1599-1605\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10900544/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10900544/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Benzydamine-Loaded Casein Nanospheres Embedded in Polyelectrolyte Multilayers
Polyelectrolyte multilayers (PEMs) films containing benzydamine hydrochloride (Benz)-loaded casein nanoparticles are developed aiming to increase the structure drug loading efficiency and to prolong the drug release. The multilayers are built on biodegradable polyester substrates, which are previously charged in a corona discharge. Medium viscosity sodium alginate (SA) is used as a partner in the multilayer formulation. The SA and the casein nanoparticles are deposited on the substrate using the layer-by-layer (LbL) deposition technique. The drug loading efficiency and the release kinetics in artificial saliva are determined spectrophotometrically.
期刊介绍:
Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.