低密度聚乙烯中瞬态空间电荷的解析模型

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Purnabhishek Muppala;C. C. Reddy
{"title":"低密度聚乙烯中瞬态空间电荷的解析模型","authors":"Purnabhishek Muppala;C. C. Reddy","doi":"10.1109/TDEI.2025.3541613","DOIUrl":null,"url":null,"abstract":"Despite being an experimentally well-studied phenomena, a consistent lacuna has always persisted in the theoretical and mathematical understanding of space charge dynamics in low-density polyethylene (LDPE). The macroscopic models reported so far in the literature seem to be insufficient and fail to predict the formation of homo- and hetero-charges near the electrodes and transport of charge packets. On the other hand, while microscopic models such as bipolar charge transport (BCT) model were able to explain homo-charge accumulation and movement of charge packets to a limited success, they are often fraught with assumptions such as neglection of diffusion phenomena and are structurally complicated when compared to macroscopic models. In this work, the authors have derived analytical solutions for space charge dynamics based on Maxwell’s equations and transient space charge limited current (TSLC)-based volumetric current models, which take into consideration the measured absorption (slow polarization) and steady-state volumetric currents. The proposed analytical (macroscopic) model can thus predict the homo- and hetero-charge accumulation in LDPE, which is validated through comparisons with the experimentally measured space charge, wherein a remarkable agreement was observed. Furthermore, the relation between the transient volumetric current and space charge dynamics is reaffirmed.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 3","pages":"1567-1574"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Model for Transient Space Charge in Low-Density Polyethylene\",\"authors\":\"Purnabhishek Muppala;C. C. Reddy\",\"doi\":\"10.1109/TDEI.2025.3541613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite being an experimentally well-studied phenomena, a consistent lacuna has always persisted in the theoretical and mathematical understanding of space charge dynamics in low-density polyethylene (LDPE). The macroscopic models reported so far in the literature seem to be insufficient and fail to predict the formation of homo- and hetero-charges near the electrodes and transport of charge packets. On the other hand, while microscopic models such as bipolar charge transport (BCT) model were able to explain homo-charge accumulation and movement of charge packets to a limited success, they are often fraught with assumptions such as neglection of diffusion phenomena and are structurally complicated when compared to macroscopic models. In this work, the authors have derived analytical solutions for space charge dynamics based on Maxwell’s equations and transient space charge limited current (TSLC)-based volumetric current models, which take into consideration the measured absorption (slow polarization) and steady-state volumetric currents. The proposed analytical (macroscopic) model can thus predict the homo- and hetero-charge accumulation in LDPE, which is validated through comparisons with the experimentally measured space charge, wherein a remarkable agreement was observed. Furthermore, the relation between the transient volumetric current and space charge dynamics is reaffirmed.\",\"PeriodicalId\":13247,\"journal\":{\"name\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"volume\":\"32 3\",\"pages\":\"1567-1574\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10884528/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10884528/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

尽管低密度聚乙烯(LDPE)的空间电荷动力学是一种实验研究很充分的现象,但在理论和数学理解上一直存在一个一致的空白。目前文献中报道的宏观模型似乎是不充分的,不能预测电极附近的同性和异性电荷的形成和电荷包的传输。另一方面,虽然微观模型(如双极电荷输运(BCT)模型)能够解释电荷包的均匀电荷积累和运动,但取得了有限的成功,但与宏观模型相比,它们往往充满了诸如忽略扩散现象等假设,并且结构复杂。在这项工作中,作者基于麦克斯韦方程和基于瞬态空间电荷限制电流(TSLC)的体积电流模型推导了空间电荷动力学的解析解,该模型考虑了测量的吸收(慢极化)和稳态体积电流。因此,所提出的分析(宏观)模型可以预测LDPE中同性和异性电荷的积累,并通过与实验测量的空间电荷的比较验证了这一点,其中观察到非常一致。并进一步确认了瞬态体积电流与空间电荷动力学之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Model for Transient Space Charge in Low-Density Polyethylene
Despite being an experimentally well-studied phenomena, a consistent lacuna has always persisted in the theoretical and mathematical understanding of space charge dynamics in low-density polyethylene (LDPE). The macroscopic models reported so far in the literature seem to be insufficient and fail to predict the formation of homo- and hetero-charges near the electrodes and transport of charge packets. On the other hand, while microscopic models such as bipolar charge transport (BCT) model were able to explain homo-charge accumulation and movement of charge packets to a limited success, they are often fraught with assumptions such as neglection of diffusion phenomena and are structurally complicated when compared to macroscopic models. In this work, the authors have derived analytical solutions for space charge dynamics based on Maxwell’s equations and transient space charge limited current (TSLC)-based volumetric current models, which take into consideration the measured absorption (slow polarization) and steady-state volumetric currents. The proposed analytical (macroscopic) model can thus predict the homo- and hetero-charge accumulation in LDPE, which is validated through comparisons with the experimentally measured space charge, wherein a remarkable agreement was observed. Furthermore, the relation between the transient volumetric current and space charge dynamics is reaffirmed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Dielectrics and Electrical Insulation
IEEE Transactions on Dielectrics and Electrical Insulation 工程技术-工程:电子与电气
CiteScore
6.00
自引率
22.60%
发文量
309
审稿时长
5.2 months
期刊介绍: Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信