Craig Cowan , Mohammad El Smaily , Pierre Aime Feulefack
{"title":"具有漂移的局部和非局部混合算子的主特征值","authors":"Craig Cowan , Mohammad El Smaily , Pierre Aime Feulefack","doi":"10.1016/j.jde.2025.113480","DOIUrl":null,"url":null,"abstract":"<div><div>We study the eigenvalue problem involving the mixed local-nonlocal operator <span><math><mi>L</mi><mo>:</mo><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mo>+</mo><mi>q</mi><mo>⋅</mo><mi>∇</mi><mo>+</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><mrow><mi>Id</mi></mrow></math></span> in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, where a Dirichlet condition is posed on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi></math></span>. The vector field <em>q</em> stands for a drift or advection in the medium. We prove the existence of a principal eigenvalue and a principal eigenfunction for <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>]</mo></math></span>. Moreover, we prove <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> regularity, up to the boundary, of the solution to the problem <span><math><mi>L</mi><mi>u</mi><mo>=</mo><mi>f</mi></math></span> when coupled with a Dirichlet condition and <span><math><mn>0</mn><mo><</mo><mi>s</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>. To prove the regularity and the existence of a principal eigenvalue, we use the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> theory for <em>L</em> obtained via a continuation argument, Krein-Rutman theorem as well as a Hopf Lemma and a maximum principle for the operator <em>L</em>, which we derive in this paper.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113480"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The principal eigenvalue of a mixed local and nonlocal operator with drift\",\"authors\":\"Craig Cowan , Mohammad El Smaily , Pierre Aime Feulefack\",\"doi\":\"10.1016/j.jde.2025.113480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the eigenvalue problem involving the mixed local-nonlocal operator <span><math><mi>L</mi><mo>:</mo><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mo>+</mo><mi>q</mi><mo>⋅</mo><mi>∇</mi><mo>+</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><mrow><mi>Id</mi></mrow></math></span> in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, where a Dirichlet condition is posed on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi></math></span>. The vector field <em>q</em> stands for a drift or advection in the medium. We prove the existence of a principal eigenvalue and a principal eigenfunction for <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>]</mo></math></span>. Moreover, we prove <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> regularity, up to the boundary, of the solution to the problem <span><math><mi>L</mi><mi>u</mi><mo>=</mo><mi>f</mi></math></span> when coupled with a Dirichlet condition and <span><math><mn>0</mn><mo><</mo><mi>s</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>. To prove the regularity and the existence of a principal eigenvalue, we use the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> theory for <em>L</em> obtained via a continuation argument, Krein-Rutman theorem as well as a Hopf Lemma and a maximum principle for the operator <em>L</em>, which we derive in this paper.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"441 \",\"pages\":\"Article 113480\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005078\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005078","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The principal eigenvalue of a mixed local and nonlocal operator with drift
We study the eigenvalue problem involving the mixed local-nonlocal operator in a bounded domain , where a Dirichlet condition is posed on . The vector field q stands for a drift or advection in the medium. We prove the existence of a principal eigenvalue and a principal eigenfunction for . Moreover, we prove regularity, up to the boundary, of the solution to the problem when coupled with a Dirichlet condition and . To prove the regularity and the existence of a principal eigenvalue, we use the theory for L obtained via a continuation argument, Krein-Rutman theorem as well as a Hopf Lemma and a maximum principle for the operator L, which we derive in this paper.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics