具有漂移的局部和非局部混合算子的主特征值

IF 2.4 2区 数学 Q1 MATHEMATICS
Craig Cowan , Mohammad El Smaily , Pierre Aime Feulefack
{"title":"具有漂移的局部和非局部混合算子的主特征值","authors":"Craig Cowan ,&nbsp;Mohammad El Smaily ,&nbsp;Pierre Aime Feulefack","doi":"10.1016/j.jde.2025.113480","DOIUrl":null,"url":null,"abstract":"<div><div>We study the eigenvalue problem involving the mixed local-nonlocal operator <span><math><mi>L</mi><mo>:</mo><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mo>+</mo><mi>q</mi><mo>⋅</mo><mi>∇</mi><mo>+</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><mrow><mi>Id</mi></mrow></math></span> in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, where a Dirichlet condition is posed on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi></math></span>. The vector field <em>q</em> stands for a drift or advection in the medium. We prove the existence of a principal eigenvalue and a principal eigenfunction for <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>]</mo></math></span>. Moreover, we prove <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> regularity, up to the boundary, of the solution to the problem <span><math><mi>L</mi><mi>u</mi><mo>=</mo><mi>f</mi></math></span> when coupled with a Dirichlet condition and <span><math><mn>0</mn><mo>&lt;</mo><mi>s</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>. To prove the regularity and the existence of a principal eigenvalue, we use the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> theory for <em>L</em> obtained via a continuation argument, Krein-Rutman theorem as well as a Hopf Lemma and a maximum principle for the operator <em>L</em>, which we derive in this paper.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113480"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The principal eigenvalue of a mixed local and nonlocal operator with drift\",\"authors\":\"Craig Cowan ,&nbsp;Mohammad El Smaily ,&nbsp;Pierre Aime Feulefack\",\"doi\":\"10.1016/j.jde.2025.113480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the eigenvalue problem involving the mixed local-nonlocal operator <span><math><mi>L</mi><mo>:</mo><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mo>+</mo><mi>q</mi><mo>⋅</mo><mi>∇</mi><mo>+</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><mrow><mi>Id</mi></mrow></math></span> in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, where a Dirichlet condition is posed on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi></math></span>. The vector field <em>q</em> stands for a drift or advection in the medium. We prove the existence of a principal eigenvalue and a principal eigenfunction for <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>]</mo></math></span>. Moreover, we prove <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> regularity, up to the boundary, of the solution to the problem <span><math><mi>L</mi><mi>u</mi><mo>=</mo><mi>f</mi></math></span> when coupled with a Dirichlet condition and <span><math><mn>0</mn><mo>&lt;</mo><mi>s</mi><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>. To prove the regularity and the existence of a principal eigenvalue, we use the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> theory for <em>L</em> obtained via a continuation argument, Krein-Rutman theorem as well as a Hopf Lemma and a maximum principle for the operator <em>L</em>, which we derive in this paper.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"441 \",\"pages\":\"Article 113480\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005078\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005078","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了涉及混合局部-非局部算子L:=−Δ+(−Δ)s+q⋅∇+a(x)Id在有界域Ω∧RN中的特征值问题,其中Dirichlet条件在RN∈Ω上被提出。向量场q表示介质中的漂移或平流。证明了s∈(0,1/2)的主特征值和主特征函数的存在性。此外,我们证明了当Dirichlet条件与0<;s<;1/2相耦合时,Lu=f的解在边界处具有C2,α正则性。为了证明L的正则性和主特征值的存在性,我们利用了由延拓论证、Krein-Rutman定理得到的L的Lp理论,以及本文导出的算子L的Hopf引理和极大值原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The principal eigenvalue of a mixed local and nonlocal operator with drift
We study the eigenvalue problem involving the mixed local-nonlocal operator L:=Δ+(Δ)s+q+a(x)Id in a bounded domain ΩRN, where a Dirichlet condition is posed on RNΩ. The vector field q stands for a drift or advection in the medium. We prove the existence of a principal eigenvalue and a principal eigenfunction for s(0,1/2]. Moreover, we prove C2,α regularity, up to the boundary, of the solution to the problem Lu=f when coupled with a Dirichlet condition and 0<s<1/2. To prove the regularity and the existence of a principal eigenvalue, we use the Lp theory for L obtained via a continuation argument, Krein-Rutman theorem as well as a Hopf Lemma and a maximum principle for the operator L, which we derive in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信