{"title":"胃食管癌的免疫组织化学生物标志物评分:计算机能帮助我们吗?","authors":"Alessandro Caputo , Valentina Angerilli , Alessandro Gambella , Vincenzo L’Imperio , Giuseppe Perrone , Chiara Taffon , Massimo Milione , Federica Grillo , Luca Mastracci , Alessandro Vanoli , Paola Parente , Matteo Fassan","doi":"10.1016/j.prp.2025.156068","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing complexity of cancer diagnostics and treatment selection has placed a growing burden on pathologists, particularly in the evaluation of immunohistochemical (IHC) biomarkers. In gastroesophageal cancers (GEC), both adenocarcinoma and squamous cell carcinoma subtypes, multiple prognostic and predictive biomarkers must be assessed to guide therapy. These evaluations require meticulous scoring, are time-consuming, and suffer from inter- and intra-observer variability. Given the worldwide shortage of pathologists, artificial intelligence (AI)-based tools have emerged as a potential solution to enhance efficiency and accuracy in biomarker scoring. This review aims to answer the question captured in its title: can AI help us in IHC biomarker scoring in GEC, and if so, how? A search of PubMed and Google Scholar was conducted to identify relevant studies. The analysis reveals that AI has demonstrated promise in improving reproducibility and reducing pathologist workload for biomarkers such as PD-L1 and HER2, although its applications in GEC remain limited compared to other cancer types. In parallel, predictive computational approaches are emerging that could revolutionize biomarker scoring altogether. By alleviating the burdens of complex scoring systems and costly additional assays, AI could have the potential to significantly enhance pathology practice in GEC biomarker evaluation.</div></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":"272 ","pages":"Article 156068"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunohistochemical biomarker scoring in gastroesophageal cancers: Can computers help us?\",\"authors\":\"Alessandro Caputo , Valentina Angerilli , Alessandro Gambella , Vincenzo L’Imperio , Giuseppe Perrone , Chiara Taffon , Massimo Milione , Federica Grillo , Luca Mastracci , Alessandro Vanoli , Paola Parente , Matteo Fassan\",\"doi\":\"10.1016/j.prp.2025.156068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing complexity of cancer diagnostics and treatment selection has placed a growing burden on pathologists, particularly in the evaluation of immunohistochemical (IHC) biomarkers. In gastroesophageal cancers (GEC), both adenocarcinoma and squamous cell carcinoma subtypes, multiple prognostic and predictive biomarkers must be assessed to guide therapy. These evaluations require meticulous scoring, are time-consuming, and suffer from inter- and intra-observer variability. Given the worldwide shortage of pathologists, artificial intelligence (AI)-based tools have emerged as a potential solution to enhance efficiency and accuracy in biomarker scoring. This review aims to answer the question captured in its title: can AI help us in IHC biomarker scoring in GEC, and if so, how? A search of PubMed and Google Scholar was conducted to identify relevant studies. The analysis reveals that AI has demonstrated promise in improving reproducibility and reducing pathologist workload for biomarkers such as PD-L1 and HER2, although its applications in GEC remain limited compared to other cancer types. In parallel, predictive computational approaches are emerging that could revolutionize biomarker scoring altogether. By alleviating the burdens of complex scoring systems and costly additional assays, AI could have the potential to significantly enhance pathology practice in GEC biomarker evaluation.</div></div>\",\"PeriodicalId\":19916,\"journal\":{\"name\":\"Pathology, research and practice\",\"volume\":\"272 \",\"pages\":\"Article 156068\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathology, research and practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0344033825002614\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033825002614","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Immunohistochemical biomarker scoring in gastroesophageal cancers: Can computers help us?
The increasing complexity of cancer diagnostics and treatment selection has placed a growing burden on pathologists, particularly in the evaluation of immunohistochemical (IHC) biomarkers. In gastroesophageal cancers (GEC), both adenocarcinoma and squamous cell carcinoma subtypes, multiple prognostic and predictive biomarkers must be assessed to guide therapy. These evaluations require meticulous scoring, are time-consuming, and suffer from inter- and intra-observer variability. Given the worldwide shortage of pathologists, artificial intelligence (AI)-based tools have emerged as a potential solution to enhance efficiency and accuracy in biomarker scoring. This review aims to answer the question captured in its title: can AI help us in IHC biomarker scoring in GEC, and if so, how? A search of PubMed and Google Scholar was conducted to identify relevant studies. The analysis reveals that AI has demonstrated promise in improving reproducibility and reducing pathologist workload for biomarkers such as PD-L1 and HER2, although its applications in GEC remain limited compared to other cancer types. In parallel, predictive computational approaches are emerging that could revolutionize biomarker scoring altogether. By alleviating the burdens of complex scoring systems and costly additional assays, AI could have the potential to significantly enhance pathology practice in GEC biomarker evaluation.
期刊介绍:
Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.