非平稳回归数据的隐私保护分布式自适应估计

IF 2.1 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Shuning Chen , Die Gan , Siyu Xie , Jinhu Lü
{"title":"非平稳回归数据的隐私保护分布式自适应估计","authors":"Shuning Chen ,&nbsp;Die Gan ,&nbsp;Siyu Xie ,&nbsp;Jinhu Lü","doi":"10.1016/j.sysconle.2025.106147","DOIUrl":null,"url":null,"abstract":"<div><div>Distributed adaptive estimation techniques allow agents in multi-agent networks to cooperatively estimate system parameters, but directly sharing information among agents increases the risk of privacy breaches. In this paper, we consider the problem of estimating unknown time-varying parameters in a discrete-time stochastic regression model over multi-agent networks, with a focus on protecting data privacy. We propose a privacy-preserving distributed consensus-based normalized least mean square algorithm that protects the local information of agents by obfuscating the information exchanged. The proposed algorithm achieves rigorous differential privacy for sensitive information by incorporating persistent additive noise to the exchanged estimates. Furthermore, we analyze the stability of the proposed algorithm and establish the upper bound of the estimation error without assuming the independency or stationarity of the regression data. Some simulation results are presented to validate the effectiveness of our theoretical findings.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"203 ","pages":"Article 106147"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy-preserving distributed adaptive estimation for non-stationary regression data\",\"authors\":\"Shuning Chen ,&nbsp;Die Gan ,&nbsp;Siyu Xie ,&nbsp;Jinhu Lü\",\"doi\":\"10.1016/j.sysconle.2025.106147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Distributed adaptive estimation techniques allow agents in multi-agent networks to cooperatively estimate system parameters, but directly sharing information among agents increases the risk of privacy breaches. In this paper, we consider the problem of estimating unknown time-varying parameters in a discrete-time stochastic regression model over multi-agent networks, with a focus on protecting data privacy. We propose a privacy-preserving distributed consensus-based normalized least mean square algorithm that protects the local information of agents by obfuscating the information exchanged. The proposed algorithm achieves rigorous differential privacy for sensitive information by incorporating persistent additive noise to the exchanged estimates. Furthermore, we analyze the stability of the proposed algorithm and establish the upper bound of the estimation error without assuming the independency or stationarity of the regression data. Some simulation results are presented to validate the effectiveness of our theoretical findings.</div></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"203 \",\"pages\":\"Article 106147\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016769112500129X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016769112500129X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

分布式自适应估计技术允许多智能体网络中的智能体协同估计系统参数,但智能体之间直接共享信息会增加隐私泄露的风险。本文研究了多智能体网络上离散时间随机回归模型中未知时变参数的估计问题,重点是保护数据隐私。提出了一种基于分布式共识的归一化最小均方算法,该算法通过混淆交换的信息来保护agent的局部信息。该算法通过在交换的估计中加入持久的加性噪声来实现敏感信息的严格差分隐私。此外,在不假设回归数据的独立性或平稳性的情况下,我们分析了所提算法的稳定性,并建立了估计误差的上界。仿真结果验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Privacy-preserving distributed adaptive estimation for non-stationary regression data
Distributed adaptive estimation techniques allow agents in multi-agent networks to cooperatively estimate system parameters, but directly sharing information among agents increases the risk of privacy breaches. In this paper, we consider the problem of estimating unknown time-varying parameters in a discrete-time stochastic regression model over multi-agent networks, with a focus on protecting data privacy. We propose a privacy-preserving distributed consensus-based normalized least mean square algorithm that protects the local information of agents by obfuscating the information exchanged. The proposed algorithm achieves rigorous differential privacy for sensitive information by incorporating persistent additive noise to the exchanged estimates. Furthermore, we analyze the stability of the proposed algorithm and establish the upper bound of the estimation error without assuming the independency or stationarity of the regression data. Some simulation results are presented to validate the effectiveness of our theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信