具有渐近有界区域的脉冲反应扩散模型

IF 1.2 3区 数学 Q1 MATHEMATICS
Min Zhu , Xiao-Qiang Zhao
{"title":"具有渐近有界区域的脉冲反应扩散模型","authors":"Min Zhu ,&nbsp;Xiao-Qiang Zhao","doi":"10.1016/j.jmaa.2025.129723","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a continuous-discrete hybrid population model in a time-varying and asymptotically bounded domain. For the sake of analysis, this model is transformed into an impulsive reaction-diffusion system in a fixed domain. With the aid of the discrete-time semiflow generated by the solution maps of a limiting system and the theory of chain transitive sets, we establish the threshold-type results on the global dynamics of the model system in the cases of monotone and nonmonotone birth functions, respectively. Our explicit formula of the threshold value can help to understand how the final expansion factor of the habitat and the birth pulse rate affect the survival of population.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129723"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An impulsive reaction-diffusion model with asymptotically bounded domain\",\"authors\":\"Min Zhu ,&nbsp;Xiao-Qiang Zhao\",\"doi\":\"10.1016/j.jmaa.2025.129723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a continuous-discrete hybrid population model in a time-varying and asymptotically bounded domain. For the sake of analysis, this model is transformed into an impulsive reaction-diffusion system in a fixed domain. With the aid of the discrete-time semiflow generated by the solution maps of a limiting system and the theory of chain transitive sets, we establish the threshold-type results on the global dynamics of the model system in the cases of monotone and nonmonotone birth functions, respectively. Our explicit formula of the threshold value can help to understand how the final expansion factor of the habitat and the birth pulse rate affect the survival of population.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 1\",\"pages\":\"Article 129723\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005049\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005049","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了时变渐近有界域上的连续离散混合种群模型。为了便于分析,将该模型转化为固定域内的脉冲反应扩散系统。利用由极限系统解映射生成的离散半流和链传递集理论,分别建立了模型系统在单调和非单调出生函数情况下的全局动力学的阈值型结果。我们的显式阈值公式可以帮助理解栖息地的最终扩张因子和出生脉冲率如何影响种群的生存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An impulsive reaction-diffusion model with asymptotically bounded domain
In this paper, we propose a continuous-discrete hybrid population model in a time-varying and asymptotically bounded domain. For the sake of analysis, this model is transformed into an impulsive reaction-diffusion system in a fixed domain. With the aid of the discrete-time semiflow generated by the solution maps of a limiting system and the theory of chain transitive sets, we establish the threshold-type results on the global dynamics of the model system in the cases of monotone and nonmonotone birth functions, respectively. Our explicit formula of the threshold value can help to understand how the final expansion factor of the habitat and the birth pulse rate affect the survival of population.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信