利用纳米材料驱动的电子转移在生物电化学系统中提高铀的回收和毒性缓解

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Meng Li , Leyi Chen , Kengqiang Zhong , Haowen He , Xing Chen , Xing Lu , Chengjun Guo , Luoyi Han , Ziyin Xia , Chenxi Li , Jingyi Wang , Wei Han , Lei Huang , Jia Yan , Bing-Jie Ni , Diyun Chen , Hongguo Zhang
{"title":"利用纳米材料驱动的电子转移在生物电化学系统中提高铀的回收和毒性缓解","authors":"Meng Li ,&nbsp;Leyi Chen ,&nbsp;Kengqiang Zhong ,&nbsp;Haowen He ,&nbsp;Xing Chen ,&nbsp;Xing Lu ,&nbsp;Chengjun Guo ,&nbsp;Luoyi Han ,&nbsp;Ziyin Xia ,&nbsp;Chenxi Li ,&nbsp;Jingyi Wang ,&nbsp;Wei Han ,&nbsp;Lei Huang ,&nbsp;Jia Yan ,&nbsp;Bing-Jie Ni ,&nbsp;Diyun Chen ,&nbsp;Hongguo Zhang","doi":"10.1016/j.biortech.2025.132757","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial electrolysis cells (MECs) face challenges in hexavalent uranium (U(VI)) remediation due to inefficient extracellular electron transfer (EET), slow biofilm formation, and uranium toxicity. This study developed a cobalt nanoparticles and nitrogen-<em>co</em>-doped carbon (CoNPs/NC) modified biocathode to address these limitations. Material characterization, electrochemical analysis, and density functional theory (DFT) calculations demonstrate that CoNPs/NC enhances biocathode conductivity and promotes EET efficiency while alleviating the toxic inhibition of uranium on microorganisms. The confinement effect facilitates electron delocalization, accelerating electron transfer to adsorbed uranyl ions (UO<sub>2</sub><sup>2+</sup>) and driving U(VI) to tetravalent uranium (U(IV)) reduction. By optimizing electrode-microbe interactions, CoNPs/NC improves biofilm stability and uranium recovery efficiency. This work provides a novel strategy to synchronize uranium detoxification with sustainable resource recovery in contaminated water systems through nanomaterial-driven electron transfer enhancement.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"433 ","pages":"Article 132757"},"PeriodicalIF":9.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing nanomaterial-driven electron transfer for enhanced uranium recovery and toxicity mitigation in bioelectrochemical systems\",\"authors\":\"Meng Li ,&nbsp;Leyi Chen ,&nbsp;Kengqiang Zhong ,&nbsp;Haowen He ,&nbsp;Xing Chen ,&nbsp;Xing Lu ,&nbsp;Chengjun Guo ,&nbsp;Luoyi Han ,&nbsp;Ziyin Xia ,&nbsp;Chenxi Li ,&nbsp;Jingyi Wang ,&nbsp;Wei Han ,&nbsp;Lei Huang ,&nbsp;Jia Yan ,&nbsp;Bing-Jie Ni ,&nbsp;Diyun Chen ,&nbsp;Hongguo Zhang\",\"doi\":\"10.1016/j.biortech.2025.132757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microbial electrolysis cells (MECs) face challenges in hexavalent uranium (U(VI)) remediation due to inefficient extracellular electron transfer (EET), slow biofilm formation, and uranium toxicity. This study developed a cobalt nanoparticles and nitrogen-<em>co</em>-doped carbon (CoNPs/NC) modified biocathode to address these limitations. Material characterization, electrochemical analysis, and density functional theory (DFT) calculations demonstrate that CoNPs/NC enhances biocathode conductivity and promotes EET efficiency while alleviating the toxic inhibition of uranium on microorganisms. The confinement effect facilitates electron delocalization, accelerating electron transfer to adsorbed uranyl ions (UO<sub>2</sub><sup>2+</sup>) and driving U(VI) to tetravalent uranium (U(IV)) reduction. By optimizing electrode-microbe interactions, CoNPs/NC improves biofilm stability and uranium recovery efficiency. This work provides a novel strategy to synchronize uranium detoxification with sustainable resource recovery in contaminated water systems through nanomaterial-driven electron transfer enhancement.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"433 \",\"pages\":\"Article 132757\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852425007230\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425007230","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

微生物电解细胞(MECs)由于细胞外电子转移(EET)效率低下、生物膜形成缓慢和铀毒性而面临六价铀(U(VI))修复的挑战。本研究开发了一种钴纳米颗粒和氮共掺杂碳(CoNPs/NC)修饰的生物阴极来解决这些局限性。材料表征、电化学分析和密度泛函理论(DFT)计算表明,CoNPs/NC提高了生物阴极的导电性,提高了EET效率,同时减轻了铀对微生物的毒性抑制作用。约束效应有利于电子离域,加速电子向吸附的铀酰离子(UO22+)转移,驱动U(VI)还原为四价铀(U(IV))。通过优化电极-微生物相互作用,CoNPs/NC提高了生物膜的稳定性和铀的回收效率。这项工作提供了一种通过纳米材料驱动的电子转移增强来同步铀解毒与污染水系统中可持续资源回收的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harnessing nanomaterial-driven electron transfer for enhanced uranium recovery and toxicity mitigation in bioelectrochemical systems

Harnessing nanomaterial-driven electron transfer for enhanced uranium recovery and toxicity mitigation in bioelectrochemical systems
Microbial electrolysis cells (MECs) face challenges in hexavalent uranium (U(VI)) remediation due to inefficient extracellular electron transfer (EET), slow biofilm formation, and uranium toxicity. This study developed a cobalt nanoparticles and nitrogen-co-doped carbon (CoNPs/NC) modified biocathode to address these limitations. Material characterization, electrochemical analysis, and density functional theory (DFT) calculations demonstrate that CoNPs/NC enhances biocathode conductivity and promotes EET efficiency while alleviating the toxic inhibition of uranium on microorganisms. The confinement effect facilitates electron delocalization, accelerating electron transfer to adsorbed uranyl ions (UO22+) and driving U(VI) to tetravalent uranium (U(IV)) reduction. By optimizing electrode-microbe interactions, CoNPs/NC improves biofilm stability and uranium recovery efficiency. This work provides a novel strategy to synchronize uranium detoxification with sustainable resource recovery in contaminated water systems through nanomaterial-driven electron transfer enhancement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信