使用DEV-YOLOv8和数字孪生系统增强虚拟隧道中的火焰探测

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yongjiang Li , Xingguo Song , Faming Lin , Xu Fang
{"title":"使用DEV-YOLOv8和数字孪生系统增强虚拟隧道中的火焰探测","authors":"Yongjiang Li ,&nbsp;Xingguo Song ,&nbsp;Faming Lin ,&nbsp;Xu Fang","doi":"10.1016/j.simpat.2025.103143","DOIUrl":null,"url":null,"abstract":"<div><div>Highway tunnel fires pose significant safety challenges requiring reliable detection and response strategies. Traditional testing methods face limitations due to insufficient sample diversity and high costs, thus making virtual environments a promising alternative for algorithm development. This study proposes DEV-YOLOv8, an enhanced YOLOv8 model integrated with digital twin technology for flame detection in simulated tunnel environments. The model incorporates three key enhancements: deformable convolutions for adaptive feature extraction, an efficient multi-scale attention mechanism for stable parameter updates, and a cross-stage partial connections module for efficient multi-scale fusion. A Unity-ROS2-based digital twin system enables cost-effective simulation and dataset generation. Experiments demonstrate DEV-YOLOv8’s superiority with 2.2%/1.5%/1.2% improvements in accuracy/recall/[email protected] respectively, while reducing computational cost by 0.8 GFLOPs. The integrated system achieves 98.21% simulation accuracy and 96.19% physical deployment accuracy, with latency differences <span><math><mo>&lt;</mo></math></span> 3.15 ms and RRT delays below 9.91 ms. This work establishes an efficient framework combining deep learning and digital twins for adaptive fire detection in tunnel environments.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"143 ","pages":"Article 103143"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced flame detection in virtual tunnels using DEV-YOLOv8 and digital twin systems\",\"authors\":\"Yongjiang Li ,&nbsp;Xingguo Song ,&nbsp;Faming Lin ,&nbsp;Xu Fang\",\"doi\":\"10.1016/j.simpat.2025.103143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Highway tunnel fires pose significant safety challenges requiring reliable detection and response strategies. Traditional testing methods face limitations due to insufficient sample diversity and high costs, thus making virtual environments a promising alternative for algorithm development. This study proposes DEV-YOLOv8, an enhanced YOLOv8 model integrated with digital twin technology for flame detection in simulated tunnel environments. The model incorporates three key enhancements: deformable convolutions for adaptive feature extraction, an efficient multi-scale attention mechanism for stable parameter updates, and a cross-stage partial connections module for efficient multi-scale fusion. A Unity-ROS2-based digital twin system enables cost-effective simulation and dataset generation. Experiments demonstrate DEV-YOLOv8’s superiority with 2.2%/1.5%/1.2% improvements in accuracy/recall/[email protected] respectively, while reducing computational cost by 0.8 GFLOPs. The integrated system achieves 98.21% simulation accuracy and 96.19% physical deployment accuracy, with latency differences <span><math><mo>&lt;</mo></math></span> 3.15 ms and RRT delays below 9.91 ms. This work establishes an efficient framework combining deep learning and digital twins for adaptive fire detection in tunnel environments.</div></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":\"143 \",\"pages\":\"Article 103143\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X25000784\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25000784","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

公路隧道火灾带来了重大的安全挑战,需要可靠的探测和响应策略。传统的测试方法由于样本多样性不足和成本高而受到限制,因此虚拟环境成为算法开发的一个有希望的替代方案。本研究提出了DEV-YOLOv8,一种集成了数字孪生技术的增强型YOLOv8模型,用于模拟隧道环境中的火焰探测。该模型包含三个关键的改进:用于自适应特征提取的可变形卷积,用于稳定参数更新的高效多尺度注意机制,以及用于高效多尺度融合的跨阶段部分连接模块。基于unity - ros2的数字孪生系统可实现经济高效的模拟和数据集生成。实验证明了DEV-YOLOv8的优势,在准确率/召回率/[email protected]方面分别提高了2.2%/1.5%/1.2%,同时降低了0.8 GFLOPs的计算成本。集成系统的仿真精度为98.21%,物理部署精度为96.19%,时延差异为<;3.15 ms和RRT延迟低于9.91 ms。这项工作建立了一个结合深度学习和数字孪生的有效框架,用于隧道环境中的自适应火灾探测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced flame detection in virtual tunnels using DEV-YOLOv8 and digital twin systems
Highway tunnel fires pose significant safety challenges requiring reliable detection and response strategies. Traditional testing methods face limitations due to insufficient sample diversity and high costs, thus making virtual environments a promising alternative for algorithm development. This study proposes DEV-YOLOv8, an enhanced YOLOv8 model integrated with digital twin technology for flame detection in simulated tunnel environments. The model incorporates three key enhancements: deformable convolutions for adaptive feature extraction, an efficient multi-scale attention mechanism for stable parameter updates, and a cross-stage partial connections module for efficient multi-scale fusion. A Unity-ROS2-based digital twin system enables cost-effective simulation and dataset generation. Experiments demonstrate DEV-YOLOv8’s superiority with 2.2%/1.5%/1.2% improvements in accuracy/recall/[email protected] respectively, while reducing computational cost by 0.8 GFLOPs. The integrated system achieves 98.21% simulation accuracy and 96.19% physical deployment accuracy, with latency differences < 3.15 ms and RRT delays below 9.91 ms. This work establishes an efficient framework combining deep learning and digital twins for adaptive fire detection in tunnel environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Simulation Modelling Practice and Theory
Simulation Modelling Practice and Theory 工程技术-计算机:跨学科应用
CiteScore
9.80
自引率
4.80%
发文量
142
审稿时长
21 days
期刊介绍: The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling. The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas. Paper submission is solicited on: • theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.; • methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.; • simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.; • distributed and real-time simulation, simulation interoperability; • tools for high performance computing simulation, including dedicated architectures and parallel computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信