Supriya Pratihar , Yeongjoon Lee , Ainan Geng , Shibani Bhattacharya , Hashim M. Al-Hashimi
{"title":"利用非共振羰基和鸟嘌呤碳R1ρ弛豫色散探测核酸的稀有和短寿命构象态","authors":"Supriya Pratihar , Yeongjoon Lee , Ainan Geng , Shibani Bhattacharya , Hashim M. Al-Hashimi","doi":"10.1016/j.jmr.2025.107910","DOIUrl":null,"url":null,"abstract":"<div><div>Chemical exchange-based NMR techniques provide powerful approaches for characterizing lowly-populated and short-lived conformational states in nucleic acids. Among possible probes, the nucleobase carbonyl and guanidino carbons stand out due to the sensitivity of their chemical shifts to hydrogen bonding and keto–enol tautomerization. However, chemical exchange measurements targeting these carbon nuclei have not yet been reported in studies of nucleic acids. Here, we present an experiment for measuring off-resonance <em>R</em><sub>1ρ</sub> relaxation dispersion for guanine-C2, guanine-C6, thymine/uracil-C2, and thymine/uracil-C4 carbons in uniformly <sup>13</sup>C/<sup>15</sup>N labeled nucleic acids. We demonstrate the utility of the experiment by characterizing chemical exchange in a G•T mismatch in duplex DNA between a dominant wobble conformation and two lowly-populated, short-lived, and rapidly interconverting Watson–Crick-like tautomeric states (G<sup>enol</sup>•T ⇌ G•T<sup>enol</sup>) implicated in DNA replicative errors. The population and exchange rate deduced from the guanine-C6, guanine-C2, and thymine-C4 off-resonance <em>R</em><sub>1ρ</sub> relaxation dispersion profiles were in excellent agreement with counterparts obtained from <em>R</em><sub>1ρ</sub> measurements on proton-bound carbon and nitrogen nuclei. The carbon chemical shifts of the minor state were downfield shifted relative to the wobble ground state, consistent with (G)C6 = O···HO-C4(T<sup>enol</sup>) and (G<sup>enol</sup>)C6-OH···O=C4(T) hydrogen bonding in the Watson-Crick-like tautomeric state. As a second application, we did not detect any exchange contribution to uracil-C2 and uracil-C4 <em>R</em><sub>1ρ</sub> profiles measured for a U·U mismatch in RNA, consistent with isomerization between two alternative wobble conformations occurring on the sub-microsecond timescale. These results establish carbonyl and guanidino carbons as valuable probes for chemical exchange measurements of micro-to-millisecond motions in nucleic acids.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"377 ","pages":"Article 107910"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing rare and short-lived conformational states in nucleic acids using off-resonance carbonyl and guanidino carbon R1ρ relaxation dispersion\",\"authors\":\"Supriya Pratihar , Yeongjoon Lee , Ainan Geng , Shibani Bhattacharya , Hashim M. Al-Hashimi\",\"doi\":\"10.1016/j.jmr.2025.107910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chemical exchange-based NMR techniques provide powerful approaches for characterizing lowly-populated and short-lived conformational states in nucleic acids. Among possible probes, the nucleobase carbonyl and guanidino carbons stand out due to the sensitivity of their chemical shifts to hydrogen bonding and keto–enol tautomerization. However, chemical exchange measurements targeting these carbon nuclei have not yet been reported in studies of nucleic acids. Here, we present an experiment for measuring off-resonance <em>R</em><sub>1ρ</sub> relaxation dispersion for guanine-C2, guanine-C6, thymine/uracil-C2, and thymine/uracil-C4 carbons in uniformly <sup>13</sup>C/<sup>15</sup>N labeled nucleic acids. We demonstrate the utility of the experiment by characterizing chemical exchange in a G•T mismatch in duplex DNA between a dominant wobble conformation and two lowly-populated, short-lived, and rapidly interconverting Watson–Crick-like tautomeric states (G<sup>enol</sup>•T ⇌ G•T<sup>enol</sup>) implicated in DNA replicative errors. The population and exchange rate deduced from the guanine-C6, guanine-C2, and thymine-C4 off-resonance <em>R</em><sub>1ρ</sub> relaxation dispersion profiles were in excellent agreement with counterparts obtained from <em>R</em><sub>1ρ</sub> measurements on proton-bound carbon and nitrogen nuclei. The carbon chemical shifts of the minor state were downfield shifted relative to the wobble ground state, consistent with (G)C6 = O···HO-C4(T<sup>enol</sup>) and (G<sup>enol</sup>)C6-OH···O=C4(T) hydrogen bonding in the Watson-Crick-like tautomeric state. As a second application, we did not detect any exchange contribution to uracil-C2 and uracil-C4 <em>R</em><sub>1ρ</sub> profiles measured for a U·U mismatch in RNA, consistent with isomerization between two alternative wobble conformations occurring on the sub-microsecond timescale. These results establish carbonyl and guanidino carbons as valuable probes for chemical exchange measurements of micro-to-millisecond motions in nucleic acids.</div></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"377 \",\"pages\":\"Article 107910\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780725000825\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725000825","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Probing rare and short-lived conformational states in nucleic acids using off-resonance carbonyl and guanidino carbon R1ρ relaxation dispersion
Chemical exchange-based NMR techniques provide powerful approaches for characterizing lowly-populated and short-lived conformational states in nucleic acids. Among possible probes, the nucleobase carbonyl and guanidino carbons stand out due to the sensitivity of their chemical shifts to hydrogen bonding and keto–enol tautomerization. However, chemical exchange measurements targeting these carbon nuclei have not yet been reported in studies of nucleic acids. Here, we present an experiment for measuring off-resonance R1ρ relaxation dispersion for guanine-C2, guanine-C6, thymine/uracil-C2, and thymine/uracil-C4 carbons in uniformly 13C/15N labeled nucleic acids. We demonstrate the utility of the experiment by characterizing chemical exchange in a G•T mismatch in duplex DNA between a dominant wobble conformation and two lowly-populated, short-lived, and rapidly interconverting Watson–Crick-like tautomeric states (Genol•T ⇌ G•Tenol) implicated in DNA replicative errors. The population and exchange rate deduced from the guanine-C6, guanine-C2, and thymine-C4 off-resonance R1ρ relaxation dispersion profiles were in excellent agreement with counterparts obtained from R1ρ measurements on proton-bound carbon and nitrogen nuclei. The carbon chemical shifts of the minor state were downfield shifted relative to the wobble ground state, consistent with (G)C6 = O···HO-C4(Tenol) and (Genol)C6-OH···O=C4(T) hydrogen bonding in the Watson-Crick-like tautomeric state. As a second application, we did not detect any exchange contribution to uracil-C2 and uracil-C4 R1ρ profiles measured for a U·U mismatch in RNA, consistent with isomerization between two alternative wobble conformations occurring on the sub-microsecond timescale. These results establish carbonyl and guanidino carbons as valuable probes for chemical exchange measurements of micro-to-millisecond motions in nucleic acids.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.