{"title":"完全分割图中的彩虹独立三角形","authors":"Q. Wang, Z.M. Jin","doi":"10.1016/j.amc.2025.129589","DOIUrl":null,"url":null,"abstract":"<div><div>For two graphs <em>K</em> and <em>H</em>, where <em>K</em> contains <em>H</em> as a subgraph, the anti-Ramsey number of <em>H</em> in <em>K</em>, denoted by <span><math><mi>A</mi><mi>R</mi><mo>(</mo><mi>K</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>, is the largest integer <em>k</em> such that there exists a <em>k</em>-edge-coloring of <em>K</em> containing no rainbow <em>H</em>. Let <span><math><mn>2</mn><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> denote the union of two independent triangles. In this paper we obtain the value of <span><math><mi>A</mi><mi>R</mi><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>‾</mo></mover><mo>+</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mn>2</mn><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> for <span><math><mi>s</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>≥</mo><mn>4</mn></math></span> and <span><math><mi>s</mi><mo>+</mo><mi>n</mi><mo>≥</mo><mn>6</mn></math></span>.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"507 ","pages":"Article 129589"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainbow independent triangles in complete split graphs\",\"authors\":\"Q. Wang, Z.M. Jin\",\"doi\":\"10.1016/j.amc.2025.129589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For two graphs <em>K</em> and <em>H</em>, where <em>K</em> contains <em>H</em> as a subgraph, the anti-Ramsey number of <em>H</em> in <em>K</em>, denoted by <span><math><mi>A</mi><mi>R</mi><mo>(</mo><mi>K</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>, is the largest integer <em>k</em> such that there exists a <em>k</em>-edge-coloring of <em>K</em> containing no rainbow <em>H</em>. Let <span><math><mn>2</mn><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> denote the union of two independent triangles. In this paper we obtain the value of <span><math><mi>A</mi><mi>R</mi><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow><mo>‾</mo></mover><mo>+</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mn>2</mn><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> for <span><math><mi>s</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>≥</mo><mn>4</mn></math></span> and <span><math><mi>s</mi><mo>+</mo><mi>n</mi><mo>≥</mo><mn>6</mn></math></span>.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"507 \",\"pages\":\"Article 129589\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325003157\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003157","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Rainbow independent triangles in complete split graphs
For two graphs K and H, where K contains H as a subgraph, the anti-Ramsey number of H in K, denoted by , is the largest integer k such that there exists a k-edge-coloring of K containing no rainbow H. Let denote the union of two independent triangles. In this paper we obtain the value of for and .
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.