截断级数系数的渐近性

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Renrong Mao
{"title":"截断级数系数的渐近性","authors":"Renrong Mao","doi":"10.1016/j.amc.2025.129592","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the groundbreaking work of Andrews and Merca, truncated theta series are extensively studied in recent years. Recently, Merca made conjectures on the non-negativity of the coefficient of <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> in truncated series from the Jacobi triple product identity and the quintuple product identity. In this paper, using Wright's Circle Method, we establish asymptotic formulas for the coefficients of these series and prove Merca's conjectures are true for sufficiently large <em>N</em>.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"507 ","pages":"Article 129592"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics for the coefficients of the truncated theta series\",\"authors\":\"Renrong Mao\",\"doi\":\"10.1016/j.amc.2025.129592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by the groundbreaking work of Andrews and Merca, truncated theta series are extensively studied in recent years. Recently, Merca made conjectures on the non-negativity of the coefficient of <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> in truncated series from the Jacobi triple product identity and the quintuple product identity. In this paper, using Wright's Circle Method, we establish asymptotic formulas for the coefficients of these series and prove Merca's conjectures are true for sufficiently large <em>N</em>.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"507 \",\"pages\":\"Article 129592\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325003182\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003182","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在Andrews和Merca开创性工作的推动下,截断θ级数近年来得到了广泛的研究。最近,Merca从Jacobi三重积恒等式和五元积恒等式中推测了截断级数中qN系数的非负性。本文利用Wright的圆法,建立了这些级数的系数的渐近公式,并证明了Merca的猜想对于足够大的N是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics for the coefficients of the truncated theta series
Motivated by the groundbreaking work of Andrews and Merca, truncated theta series are extensively studied in recent years. Recently, Merca made conjectures on the non-negativity of the coefficient of qN in truncated series from the Jacobi triple product identity and the quintuple product identity. In this paper, using Wright's Circle Method, we establish asymptotic formulas for the coefficients of these series and prove Merca's conjectures are true for sufficiently large N.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信