使用人工智能技术对印度加济阿巴德市的颗粒物(PM2.5和PM10)进行空气质量分析和建模

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Patil Aashish Suhas, Aneesh Mathew, Chinthu Naresh
{"title":"使用人工智能技术对印度加济阿巴德市的颗粒物(PM2.5和PM10)进行空气质量分析和建模","authors":"Patil Aashish Suhas,&nbsp;Aneesh Mathew,&nbsp;Chinthu Naresh","doi":"10.1016/j.ifacsc.2025.100315","DOIUrl":null,"url":null,"abstract":"<div><div>Air pollution affects 91% of the global population, causing approximately 4.2 million deaths annually, according to the World Health Organization. This study presents a comprehensive analysis of spatiotemporal air quality patterns in Ghaziabad, focusing on seasonal variations, aerosol characteristics, correlation analysis, machine learning-based modelling, sensitivity analysis, and short-term prediction of PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span> and PM<sub>10</sub> concentrations using data from four monitoring stations (MS1, MS2, MS3, MS4). Alarming levels of PM<sub>10</sub> and PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span>, frequently exceeding permissible standards, were observed, particularly at MS2, where industrial activities led to an 81.29% exceedance rate for PM<sub>10</sub> with a maximum concentration increase of 447.23%. PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span> concentrations at MS2 reached <span><math><mrow><mn>360</mn><mo>.</mo><mn>93</mn><mspace></mspace><mi>μ</mi><mi>g</mi></mrow></math></span>/m<sup>3</sup>, representing a 501.55% increase. Meteorological circumstances, particularly during winter, significantly increased pollution levels. SO<sub>2</sub> and ozone concentrations adhered to CPCB (Central Pollution Control Board) guidelines; nonetheless, winter months experienced a significant increase in overall pollutant levels. Positive correlations were identified between PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span> and PM<sub>10</sub> with NO<sub>2</sub> (r <span><math><mo>=</mo></math></span> 0.54, r <span><math><mo>=</mo></math></span> 0.51), CO (r <span><math><mo>=</mo></math></span> 0.51, r <span><math><mo>=</mo></math></span> 0.45), and SO<sub>2</sub> (r <span><math><mo>=</mo></math></span> 0.18, r <span><math><mo>=</mo></math></span> 0.34), while negative correlations were noted with ozone (r <span><math><mo>=</mo></math></span> −0.02, r <span><math><mo>=</mo></math></span> −0.18), wind speed (r <span><math><mo>=</mo></math></span> −0.17, r <span><math><mo>=</mo></math></span> −0.20), and relative humidity (r <span><math><mo>=</mo></math></span> −0.08, r <span><math><mo>=</mo></math></span> −0.37). Solar radiation also showed a negative correlation (r <span><math><mo>=</mo></math></span> −0.32, r <span><math><mo>=</mo></math></span> −0.13). The study optimized predictive models for air quality forecasting using historical data. The XGBoost model outperformed others in predicting PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span> and PM<sub>10</sub> concentrations, achieving the lowest Mean Absolute Error (MAE) and highest R<sup>2</sup> values (PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span>: MAE <span><math><mrow><mn>13</mn><mo>.</mo><mn>24</mn><mspace></mspace><mi>μ</mi><mi>g</mi></mrow></math></span>/m<sup>3</sup>, R<sup>2</sup> 0.8960 and PM<sub>10</sub>: MAE <span><math><mrow><mn>27</mn><mo>.</mo><mn>46</mn><mspace></mspace><mi>μ</mi><mi>g</mi></mrow></math></span>/m<sup>3</sup>, R<sup>2</sup> 0.8397). Sensitivity analysis identified PM<sub>10</sub> concentration as the most influential predictor of PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span> levels, contributing approximately 63.56% to the model’s predictive power, followed by solar radiation (9.74%) and relative humidity (8.30%). The model accurately forecasted air quality for 2023, demonstrating high reliability (PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span> for 2023: MAE <span><math><mrow><mn>14</mn><mo>.</mo><mn>64</mn><mspace></mspace><mi>μ</mi><mi>g</mi></mrow></math></span>/m<sup>3</sup>, R<sup>2</sup> 0.8850, and PM<sub>10</sub> for 2023: MAE <span><math><mrow><mn>27</mn><mo>.</mo><mn>66</mn><mspace></mspace><mi>μ</mi><mi>g</mi></mrow></math></span>/m<sup>3</sup>, R<sup>2</sup> 0.8234). These robust short-term forecasts are essential for public health planning and environmental management, enabling proactive measures to mitigate pollution levels and safeguard public health. Reliable predictions facilitate targeted actions, supporting policy decisions to reduce air pollution and its adverse effects on the population.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"32 ","pages":"Article 100315"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air quality analysis and modelling of particulate matter (PM2.5 and PM10) of Ghaziabad city in India using Artificial Intelligence techniques\",\"authors\":\"Patil Aashish Suhas,&nbsp;Aneesh Mathew,&nbsp;Chinthu Naresh\",\"doi\":\"10.1016/j.ifacsc.2025.100315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Air pollution affects 91% of the global population, causing approximately 4.2 million deaths annually, according to the World Health Organization. This study presents a comprehensive analysis of spatiotemporal air quality patterns in Ghaziabad, focusing on seasonal variations, aerosol characteristics, correlation analysis, machine learning-based modelling, sensitivity analysis, and short-term prediction of PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span> and PM<sub>10</sub> concentrations using data from four monitoring stations (MS1, MS2, MS3, MS4). Alarming levels of PM<sub>10</sub> and PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span>, frequently exceeding permissible standards, were observed, particularly at MS2, where industrial activities led to an 81.29% exceedance rate for PM<sub>10</sub> with a maximum concentration increase of 447.23%. PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span> concentrations at MS2 reached <span><math><mrow><mn>360</mn><mo>.</mo><mn>93</mn><mspace></mspace><mi>μ</mi><mi>g</mi></mrow></math></span>/m<sup>3</sup>, representing a 501.55% increase. Meteorological circumstances, particularly during winter, significantly increased pollution levels. SO<sub>2</sub> and ozone concentrations adhered to CPCB (Central Pollution Control Board) guidelines; nonetheless, winter months experienced a significant increase in overall pollutant levels. Positive correlations were identified between PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span> and PM<sub>10</sub> with NO<sub>2</sub> (r <span><math><mo>=</mo></math></span> 0.54, r <span><math><mo>=</mo></math></span> 0.51), CO (r <span><math><mo>=</mo></math></span> 0.51, r <span><math><mo>=</mo></math></span> 0.45), and SO<sub>2</sub> (r <span><math><mo>=</mo></math></span> 0.18, r <span><math><mo>=</mo></math></span> 0.34), while negative correlations were noted with ozone (r <span><math><mo>=</mo></math></span> −0.02, r <span><math><mo>=</mo></math></span> −0.18), wind speed (r <span><math><mo>=</mo></math></span> −0.17, r <span><math><mo>=</mo></math></span> −0.20), and relative humidity (r <span><math><mo>=</mo></math></span> −0.08, r <span><math><mo>=</mo></math></span> −0.37). Solar radiation also showed a negative correlation (r <span><math><mo>=</mo></math></span> −0.32, r <span><math><mo>=</mo></math></span> −0.13). The study optimized predictive models for air quality forecasting using historical data. The XGBoost model outperformed others in predicting PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span> and PM<sub>10</sub> concentrations, achieving the lowest Mean Absolute Error (MAE) and highest R<sup>2</sup> values (PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span>: MAE <span><math><mrow><mn>13</mn><mo>.</mo><mn>24</mn><mspace></mspace><mi>μ</mi><mi>g</mi></mrow></math></span>/m<sup>3</sup>, R<sup>2</sup> 0.8960 and PM<sub>10</sub>: MAE <span><math><mrow><mn>27</mn><mo>.</mo><mn>46</mn><mspace></mspace><mi>μ</mi><mi>g</mi></mrow></math></span>/m<sup>3</sup>, R<sup>2</sup> 0.8397). Sensitivity analysis identified PM<sub>10</sub> concentration as the most influential predictor of PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span> levels, contributing approximately 63.56% to the model’s predictive power, followed by solar radiation (9.74%) and relative humidity (8.30%). The model accurately forecasted air quality for 2023, demonstrating high reliability (PM<span><math><msub><mrow></mrow><mrow><mi>2.5</mi></mrow></msub></math></span> for 2023: MAE <span><math><mrow><mn>14</mn><mo>.</mo><mn>64</mn><mspace></mspace><mi>μ</mi><mi>g</mi></mrow></math></span>/m<sup>3</sup>, R<sup>2</sup> 0.8850, and PM<sub>10</sub> for 2023: MAE <span><math><mrow><mn>27</mn><mo>.</mo><mn>66</mn><mspace></mspace><mi>μ</mi><mi>g</mi></mrow></math></span>/m<sup>3</sup>, R<sup>2</sup> 0.8234). These robust short-term forecasts are essential for public health planning and environmental management, enabling proactive measures to mitigate pollution levels and safeguard public health. Reliable predictions facilitate targeted actions, supporting policy decisions to reduce air pollution and its adverse effects on the population.</div></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"32 \",\"pages\":\"Article 100315\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601825000215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601825000215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

世界卫生组织(World Health Organization)的数据显示,全球91%的人口受到空气污染的影响,每年造成约420万人死亡。本研究对加兹阿巴德的时空空气质量模式进行了全面分析,重点关注季节变化、气溶胶特征、相关性分析、基于机器学习的建模、敏感性分析,并利用四个监测站(MS1、MS2、MS3、MS4)的数据对PM2.5和PM10浓度进行了短期预测。PM10和PM2.5的警戒水平经常超过允许的标准,特别是在MS2,工业活动导致PM10超标率为81.29%,最大浓度增加了447.23%。PM2.5浓度达到360.93μg/m3,增长501.55%。气象环境,特别是冬季,大大增加了污染程度。二氧化硫和臭氧浓度符合中央污染控制委员会(CPCB)的准则;尽管如此,冬季的几个月总体污染物水平显著上升。PM2.5和PM10与NO2 (r = 0.54, r = 0.51)、CO (r = 0.51, r = 0.45)、SO2 (r = 0.18, r = 0.34)呈显著正相关,与臭氧(r = - 0.02, r = - 0.18)、风速(r = - 0.17, r = - 0.20)、相对湿度(r = - 0.08, r = - 0.37)呈显著负相关。太阳辐射也呈负相关(r = - 0.32, r = - 0.13)。该研究优化了利用历史数据预测空气质量的预测模型。XGBoost模型在预测PM2.5和PM10浓度方面优于其他模型,平均绝对误差(MAE)最低,R2最高(PM2.5: MAE 13.24μg/m3, R2 0.8960, PM10: MAE 27.46μg/m3, R2 0.8397)。灵敏度分析发现,PM10浓度对PM2.5水平的影响最大,对模型预测能力的贡献率约为63.56%,其次是太阳辐射(9.74%)和相对湿度(8.30%)。该模型准确预测了2023年的空气质量,具有较高的可靠性(2023年PM2.5: MAE 14.64μg/m3, R2 0.8850, PM10: MAE 27.66μg/m3, R2 0.8234)。这些可靠的短期预报对公共卫生规划和环境管理至关重要,有助于采取主动措施减轻污染水平,保障公众健康。可靠的预测有助于采取有针对性的行动,支持减少空气污染及其对人口的不利影响的政策决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Air quality analysis and modelling of particulate matter (PM2.5 and PM10) of Ghaziabad city in India using Artificial Intelligence techniques
Air pollution affects 91% of the global population, causing approximately 4.2 million deaths annually, according to the World Health Organization. This study presents a comprehensive analysis of spatiotemporal air quality patterns in Ghaziabad, focusing on seasonal variations, aerosol characteristics, correlation analysis, machine learning-based modelling, sensitivity analysis, and short-term prediction of PM2.5 and PM10 concentrations using data from four monitoring stations (MS1, MS2, MS3, MS4). Alarming levels of PM10 and PM2.5, frequently exceeding permissible standards, were observed, particularly at MS2, where industrial activities led to an 81.29% exceedance rate for PM10 with a maximum concentration increase of 447.23%. PM2.5 concentrations at MS2 reached 360.93μg/m3, representing a 501.55% increase. Meteorological circumstances, particularly during winter, significantly increased pollution levels. SO2 and ozone concentrations adhered to CPCB (Central Pollution Control Board) guidelines; nonetheless, winter months experienced a significant increase in overall pollutant levels. Positive correlations were identified between PM2.5 and PM10 with NO2 (r = 0.54, r = 0.51), CO (r = 0.51, r = 0.45), and SO2 (r = 0.18, r = 0.34), while negative correlations were noted with ozone (r = −0.02, r = −0.18), wind speed (r = −0.17, r = −0.20), and relative humidity (r = −0.08, r = −0.37). Solar radiation also showed a negative correlation (r = −0.32, r = −0.13). The study optimized predictive models for air quality forecasting using historical data. The XGBoost model outperformed others in predicting PM2.5 and PM10 concentrations, achieving the lowest Mean Absolute Error (MAE) and highest R2 values (PM2.5: MAE 13.24μg/m3, R2 0.8960 and PM10: MAE 27.46μg/m3, R2 0.8397). Sensitivity analysis identified PM10 concentration as the most influential predictor of PM2.5 levels, contributing approximately 63.56% to the model’s predictive power, followed by solar radiation (9.74%) and relative humidity (8.30%). The model accurately forecasted air quality for 2023, demonstrating high reliability (PM2.5 for 2023: MAE 14.64μg/m3, R2 0.8850, and PM10 for 2023: MAE 27.66μg/m3, R2 0.8234). These robust short-term forecasts are essential for public health planning and environmental management, enabling proactive measures to mitigate pollution levels and safeguard public health. Reliable predictions facilitate targeted actions, supporting policy decisions to reduce air pollution and its adverse effects on the population.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信