双轴应变对双栅单层锑烯晶体管电性能的影响

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Manouchehr Hosseini , Shoeib Babaee Touski
{"title":"双轴应变对双栅单层锑烯晶体管电性能的影响","authors":"Manouchehr Hosseini ,&nbsp;Shoeib Babaee Touski","doi":"10.1016/j.physb.2025.417385","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the strain-dependent electronic properties and transistor performance of monolayer antimonene using Density Functional Theory (DFT) and the ”Top-Of-the-Barrier” transport model. The study analyzes the impact of biaxial strain on the band structure, effective mass, and charge transport characteristics. The results reveal a transition from an indirect to a direct bandgap beyond at small tensile strain. The performance of n-type and p-type double gate MOSFETs with an monolayer antimonene channel is systematically evaluated. The tensile strain significantly reduces the ON-current and ON-OFF current ratio of n-type transistors, while p-type transistors exhibit greater stability under strain variations. These results provide valuable insights into the feasibility of strain-engineered monolayer antimonene for future high-performance, low-power nanoelectronic applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"714 ","pages":"Article 417385"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of biaxial strain on electrical performance of double-gate monolayer antimonene transistors\",\"authors\":\"Manouchehr Hosseini ,&nbsp;Shoeib Babaee Touski\",\"doi\":\"10.1016/j.physb.2025.417385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the strain-dependent electronic properties and transistor performance of monolayer antimonene using Density Functional Theory (DFT) and the ”Top-Of-the-Barrier” transport model. The study analyzes the impact of biaxial strain on the band structure, effective mass, and charge transport characteristics. The results reveal a transition from an indirect to a direct bandgap beyond at small tensile strain. The performance of n-type and p-type double gate MOSFETs with an monolayer antimonene channel is systematically evaluated. The tensile strain significantly reduces the ON-current and ON-OFF current ratio of n-type transistors, while p-type transistors exhibit greater stability under strain variations. These results provide valuable insights into the feasibility of strain-engineered monolayer antimonene for future high-performance, low-power nanoelectronic applications.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"714 \",\"pages\":\"Article 417385\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625005022\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625005022","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本文利用密度泛函理论(DFT)和“势垒顶”输运模型研究了单层锑烯的应变依赖电子特性和晶体管性能。研究分析了双轴应变对能带结构、有效质量和电荷输运特性的影响。结果表明,在小的拉伸应变下,从间接带隙过渡到直接带隙。系统地评价了n型和p型双栅极mosfet的性能。拉伸应变显著降低了n型晶体管的通断电流和通断电流比,而p型晶体管在应变变化下表现出更高的稳定性。这些结果为菌株工程单层锑烯在未来高性能、低功耗纳米电子应用中的可行性提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of biaxial strain on electrical performance of double-gate monolayer antimonene transistors
This paper investigates the strain-dependent electronic properties and transistor performance of monolayer antimonene using Density Functional Theory (DFT) and the ”Top-Of-the-Barrier” transport model. The study analyzes the impact of biaxial strain on the band structure, effective mass, and charge transport characteristics. The results reveal a transition from an indirect to a direct bandgap beyond at small tensile strain. The performance of n-type and p-type double gate MOSFETs with an monolayer antimonene channel is systematically evaluated. The tensile strain significantly reduces the ON-current and ON-OFF current ratio of n-type transistors, while p-type transistors exhibit greater stability under strain variations. These results provide valuable insights into the feasibility of strain-engineered monolayer antimonene for future high-performance, low-power nanoelectronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信