基于异构稀疏知识的大规模稀疏多目标优化进化算法

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jing Jiang , Huoyuan Wang , Pingping Tong , Juanjuan Hong , Zhe Liu , Xing Zhuang , Benyue Su , Fei Han
{"title":"基于异构稀疏知识的大规模稀疏多目标优化进化算法","authors":"Jing Jiang ,&nbsp;Huoyuan Wang ,&nbsp;Pingping Tong ,&nbsp;Juanjuan Hong ,&nbsp;Zhe Liu ,&nbsp;Xing Zhuang ,&nbsp;Benyue Su ,&nbsp;Fei Han","doi":"10.1016/j.swevo.2025.102000","DOIUrl":null,"url":null,"abstract":"<div><div>Research on sparse large-scale multiobjective optimization problems (LSMOPs) is rapidly growing due to their diverse applications in science and engineering. Existing studies typically employ static or dynamic knowledge to guide the search in evolutionary algorithms for solving sparse LSMOPs. However, relying solely on a single type of sparsity knowledge may result in ambiguous guidance and suboptimal optimization. To address this, we propose an evolutionary algorithm based on heterogeneous sparsity knowledge (HSKEA). In this approach, static knowledge is represented by a scoring vector to assess the importance of each decision variable, while dynamic knowledge is captured by indicator vectors that identify whether a decision variable is zero or non-zero and iteratively updates based on the population distribution. Two types of populations, including main and auxiliary populations, are initialized using both dynamic and static knowledge and evolved through a new genetic operator guided by heterogeneous sparsity knowledge and information sharing. Experimental results comparing HSKEA to four state-of-the-art algorithms across eight benchmark test problems and three real-world scenarios demonstrate its effectiveness.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"96 ","pages":"Article 102000"},"PeriodicalIF":8.2000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A heterogeneous sparsity knowledge guided evolutionary algorithm for sparse large-scale multiobjective optimization\",\"authors\":\"Jing Jiang ,&nbsp;Huoyuan Wang ,&nbsp;Pingping Tong ,&nbsp;Juanjuan Hong ,&nbsp;Zhe Liu ,&nbsp;Xing Zhuang ,&nbsp;Benyue Su ,&nbsp;Fei Han\",\"doi\":\"10.1016/j.swevo.2025.102000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Research on sparse large-scale multiobjective optimization problems (LSMOPs) is rapidly growing due to their diverse applications in science and engineering. Existing studies typically employ static or dynamic knowledge to guide the search in evolutionary algorithms for solving sparse LSMOPs. However, relying solely on a single type of sparsity knowledge may result in ambiguous guidance and suboptimal optimization. To address this, we propose an evolutionary algorithm based on heterogeneous sparsity knowledge (HSKEA). In this approach, static knowledge is represented by a scoring vector to assess the importance of each decision variable, while dynamic knowledge is captured by indicator vectors that identify whether a decision variable is zero or non-zero and iteratively updates based on the population distribution. Two types of populations, including main and auxiliary populations, are initialized using both dynamic and static knowledge and evolved through a new genetic operator guided by heterogeneous sparsity knowledge and information sharing. Experimental results comparing HSKEA to four state-of-the-art algorithms across eight benchmark test problems and three real-world scenarios demonstrate its effectiveness.</div></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"96 \",\"pages\":\"Article 102000\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650225001580\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225001580","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

稀疏大规模多目标优化问题(LSMOPs)由于其在科学和工程上的广泛应用而迅速发展。现有研究通常使用静态或动态知识来指导求解稀疏LSMOPs的进化算法的搜索。然而,仅仅依赖于单一类型的稀疏性知识可能会导致模糊的指导和次优优化。为了解决这个问题,我们提出了一种基于异构稀疏知识(HSKEA)的进化算法。在该方法中,静态知识由评分向量表示,以评估每个决策变量的重要性,而动态知识由指示向量捕获,该指示向量确定决策变量是零还是非零,并根据总体分布迭代更新。利用动态知识和静态知识对主种群和辅助种群进行初始化,并通过异构稀疏知识和信息共享指导下的新遗传算子进行进化。将HSKEA与四种最先进的算法在八个基准测试问题和三个真实场景中进行比较的实验结果证明了它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A heterogeneous sparsity knowledge guided evolutionary algorithm for sparse large-scale multiobjective optimization
Research on sparse large-scale multiobjective optimization problems (LSMOPs) is rapidly growing due to their diverse applications in science and engineering. Existing studies typically employ static or dynamic knowledge to guide the search in evolutionary algorithms for solving sparse LSMOPs. However, relying solely on a single type of sparsity knowledge may result in ambiguous guidance and suboptimal optimization. To address this, we propose an evolutionary algorithm based on heterogeneous sparsity knowledge (HSKEA). In this approach, static knowledge is represented by a scoring vector to assess the importance of each decision variable, while dynamic knowledge is captured by indicator vectors that identify whether a decision variable is zero or non-zero and iteratively updates based on the population distribution. Two types of populations, including main and auxiliary populations, are initialized using both dynamic and static knowledge and evolved through a new genetic operator guided by heterogeneous sparsity knowledge and information sharing. Experimental results comparing HSKEA to four state-of-the-art algorithms across eight benchmark test problems and three real-world scenarios demonstrate its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信