地震统计模型:贝叶斯分析

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
M.O. Costa , S.L.E.F. da Silva , R. Silva , G.S. França , C.S. Vilar , J.S. Alcaniz
{"title":"地震统计模型:贝叶斯分析","authors":"M.O. Costa ,&nbsp;S.L.E.F. da Silva ,&nbsp;R. Silva ,&nbsp;G.S. França ,&nbsp;C.S. Vilar ,&nbsp;J.S. Alcaniz","doi":"10.1016/j.physa.2025.130678","DOIUrl":null,"url":null,"abstract":"<div><div>The Gutenberg–Richter (GR) relation is an exponential law widely used for describing earthquakes’ statistical magnitude distributions. Using statistical physics approaches, we present robust models based on the Tsallis <span><math><mi>q</mi></math></span>- and Kaniadakis <span><math><mi>κ</mi></math></span>-entropies, aiming to capture the influence of irregular fragments occupying space between two tectonic plates with irregular surfaces. The proposed models are called <span><math><mi>q</mi></math></span>-GR and <span><math><mi>κ</mi></math></span>-GR laws, respectively. Using Bayesian statistical analysis, we examined a large dataset of over 450,000 seismic events recorded along the San Andreas Fault between 2000 and 2023. Our findings reveal that the <span><math><mi>q</mi></math></span>-GR and <span><math><mi>κ</mi></math></span>-GR models outperform the classical GR law. The results show the <span><math><mi>κ</mi></math></span>-GR model exhibits particularly strong empirical support, with optimal performance occurring when <span><math><mrow><mi>κ</mi><mo>≈</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"674 ","pages":"Article 130678"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical models for earthquakes: A Bayesian analysis\",\"authors\":\"M.O. Costa ,&nbsp;S.L.E.F. da Silva ,&nbsp;R. Silva ,&nbsp;G.S. França ,&nbsp;C.S. Vilar ,&nbsp;J.S. Alcaniz\",\"doi\":\"10.1016/j.physa.2025.130678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Gutenberg–Richter (GR) relation is an exponential law widely used for describing earthquakes’ statistical magnitude distributions. Using statistical physics approaches, we present robust models based on the Tsallis <span><math><mi>q</mi></math></span>- and Kaniadakis <span><math><mi>κ</mi></math></span>-entropies, aiming to capture the influence of irregular fragments occupying space between two tectonic plates with irregular surfaces. The proposed models are called <span><math><mi>q</mi></math></span>-GR and <span><math><mi>κ</mi></math></span>-GR laws, respectively. Using Bayesian statistical analysis, we examined a large dataset of over 450,000 seismic events recorded along the San Andreas Fault between 2000 and 2023. Our findings reveal that the <span><math><mi>q</mi></math></span>-GR and <span><math><mi>κ</mi></math></span>-GR models outperform the classical GR law. The results show the <span><math><mi>κ</mi></math></span>-GR model exhibits particularly strong empirical support, with optimal performance occurring when <span><math><mrow><mi>κ</mi><mo>≈</mo><mn>1</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"674 \",\"pages\":\"Article 130678\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437125003309\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125003309","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

古腾堡-里希特(GR)关系是一种指数律,广泛用于描述地震的统计震级分布。利用统计物理方法,我们建立了基于Tsallis q-和Kaniadakis κ-熵的稳健模型,旨在捕捉不规则碎片占据两个具有不规则表面的构造板块之间空间的影响。所提出的模型分别称为q-GR和κ-GR定律。使用贝叶斯统计分析,我们检查了2000年至2023年间沿着圣安德烈亚斯断层记录的超过45万次地震事件的大型数据集。结果表明,q-GR和κ-GR模型优于经典GR定律。结果表明,κ- gr模型具有特别强的经验支持,当κ≈1时表现最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical models for earthquakes: A Bayesian analysis
The Gutenberg–Richter (GR) relation is an exponential law widely used for describing earthquakes’ statistical magnitude distributions. Using statistical physics approaches, we present robust models based on the Tsallis q- and Kaniadakis κ-entropies, aiming to capture the influence of irregular fragments occupying space between two tectonic plates with irregular surfaces. The proposed models are called q-GR and κ-GR laws, respectively. Using Bayesian statistical analysis, we examined a large dataset of over 450,000 seismic events recorded along the San Andreas Fault between 2000 and 2023. Our findings reveal that the q-GR and κ-GR models outperform the classical GR law. The results show the κ-GR model exhibits particularly strong empirical support, with optimal performance occurring when κ1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信