{"title":"4D电子显微镜下太阳能材料界面电子空穴动力学研究","authors":"Lijie Wang , Omar F. Mohammed","doi":"10.1016/j.matt.2025.102087","DOIUrl":null,"url":null,"abstract":"<div><div>Interfacial carrier dynamics are crucial for optoelectronic device performance; however, probing these dynamics at ultrafast and nanoscale levels presents significant challenges. Liao et al. tackled this by employing four-dimensional scanning ultrafast electron microscopy to directly visualize carrier transport across a Si/Ge heterojunction, offering a comprehensive insight into the interfacial dynamics.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 6","pages":"Article 102087"},"PeriodicalIF":17.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial electron-hole dynamics in solar materials revealed by 4D electron microscopy\",\"authors\":\"Lijie Wang , Omar F. Mohammed\",\"doi\":\"10.1016/j.matt.2025.102087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interfacial carrier dynamics are crucial for optoelectronic device performance; however, probing these dynamics at ultrafast and nanoscale levels presents significant challenges. Liao et al. tackled this by employing four-dimensional scanning ultrafast electron microscopy to directly visualize carrier transport across a Si/Ge heterojunction, offering a comprehensive insight into the interfacial dynamics.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"8 6\",\"pages\":\"Article 102087\"},\"PeriodicalIF\":17.5000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238525001304\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238525001304","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Interfacial electron-hole dynamics in solar materials revealed by 4D electron microscopy
Interfacial carrier dynamics are crucial for optoelectronic device performance; however, probing these dynamics at ultrafast and nanoscale levels presents significant challenges. Liao et al. tackled this by employing four-dimensional scanning ultrafast electron microscopy to directly visualize carrier transport across a Si/Ge heterojunction, offering a comprehensive insight into the interfacial dynamics.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.