{"title":"Riesz势类型算子的新逐点边界","authors":"Cong Hoang , Kabe Moen , Carlos Pérez Moreno","doi":"10.1016/j.jfa.2025.111060","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate new pointwise bounds for a class of rough integral operators, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mi>α</mi></mrow></msub></math></span>, for a parameter <span><math><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mi>n</mi></math></span> that includes classical rough singular integrals of Calderón and Zygmund, rough hypersingular integrals, and rough fractional integral operators. We prove that the rough integral operators are bounded by a sparse potential operator that depends on the size of the symbol Ω. As a result of our pointwise inequalities, we obtain several new Sobolev mappings of the form <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mi>α</mi></mrow></msub><mo>:</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111060"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New pointwise bounds by Riesz potential type operators\",\"authors\":\"Cong Hoang , Kabe Moen , Carlos Pérez Moreno\",\"doi\":\"10.1016/j.jfa.2025.111060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate new pointwise bounds for a class of rough integral operators, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mi>α</mi></mrow></msub></math></span>, for a parameter <span><math><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mi>n</mi></math></span> that includes classical rough singular integrals of Calderón and Zygmund, rough hypersingular integrals, and rough fractional integral operators. We prove that the rough integral operators are bounded by a sparse potential operator that depends on the size of the symbol Ω. As a result of our pointwise inequalities, we obtain several new Sobolev mappings of the form <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mi>α</mi></mrow></msub><mo>:</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 9\",\"pages\":\"Article 111060\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625002423\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002423","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
New pointwise bounds by Riesz potential type operators
We investigate new pointwise bounds for a class of rough integral operators, , for a parameter that includes classical rough singular integrals of Calderón and Zygmund, rough hypersingular integrals, and rough fractional integral operators. We prove that the rough integral operators are bounded by a sparse potential operator that depends on the size of the symbol Ω. As a result of our pointwise inequalities, we obtain several new Sobolev mappings of the form .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis