Riesz势类型算子的新逐点边界

IF 1.7 2区 数学 Q1 MATHEMATICS
Cong Hoang , Kabe Moen , Carlos Pérez Moreno
{"title":"Riesz势类型算子的新逐点边界","authors":"Cong Hoang ,&nbsp;Kabe Moen ,&nbsp;Carlos Pérez Moreno","doi":"10.1016/j.jfa.2025.111060","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate new pointwise bounds for a class of rough integral operators, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mi>α</mi></mrow></msub></math></span>, for a parameter <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mi>n</mi></math></span> that includes classical rough singular integrals of Calderón and Zygmund, rough hypersingular integrals, and rough fractional integral operators. We prove that the rough integral operators are bounded by a sparse potential operator that depends on the size of the symbol Ω. As a result of our pointwise inequalities, we obtain several new Sobolev mappings of the form <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mi>α</mi></mrow></msub><mo>:</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111060"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New pointwise bounds by Riesz potential type operators\",\"authors\":\"Cong Hoang ,&nbsp;Kabe Moen ,&nbsp;Carlos Pérez Moreno\",\"doi\":\"10.1016/j.jfa.2025.111060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate new pointwise bounds for a class of rough integral operators, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mi>α</mi></mrow></msub></math></span>, for a parameter <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mi>n</mi></math></span> that includes classical rough singular integrals of Calderón and Zygmund, rough hypersingular integrals, and rough fractional integral operators. We prove that the rough integral operators are bounded by a sparse potential operator that depends on the size of the symbol Ω. As a result of our pointwise inequalities, we obtain several new Sobolev mappings of the form <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mi>α</mi></mrow></msub><mo>:</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 9\",\"pages\":\"Article 111060\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625002423\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002423","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于参数0<;α<n,我们研究了一类粗糙积分算子TΩ,α的新的点界,其中包括Calderón和Zygmund的经典粗糙奇异积分,粗糙超奇异积分和粗糙分数积分算子。我们证明了粗糙积分算子由一个依赖于符号Ω大小的稀疏势算子限定。由于我们的点向不等式,我们得到了几个形式为TΩ,α:W˙1,p→Lq的新的Sobolev映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New pointwise bounds by Riesz potential type operators
We investigate new pointwise bounds for a class of rough integral operators, TΩ,α, for a parameter 0<α<n that includes classical rough singular integrals of Calderón and Zygmund, rough hypersingular integrals, and rough fractional integral operators. We prove that the rough integral operators are bounded by a sparse potential operator that depends on the size of the symbol Ω. As a result of our pointwise inequalities, we obtain several new Sobolev mappings of the form TΩ,α:W˙1,pLq.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信