异氰化物-金属相互作用中结合几何效应的单分子振动表征

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liya Bi, Zhe Wang, Krista P. Balto, Andrea R. Tao, Tod A. Pascal, Yanning Zhang, Joshua S. Figueroa* and Shaowei Li*, 
{"title":"异氰化物-金属相互作用中结合几何效应的单分子振动表征","authors":"Liya Bi,&nbsp;Zhe Wang,&nbsp;Krista P. Balto,&nbsp;Andrea R. Tao,&nbsp;Tod A. Pascal,&nbsp;Yanning Zhang,&nbsp;Joshua S. Figueroa* and Shaowei Li*,&nbsp;","doi":"10.1021/acs.nanolett.5c0245410.1021/acs.nanolett.5c02454","DOIUrl":null,"url":null,"abstract":"<p >Isocyanide–metal binding is governed by σ-donation and π-back-bonding, which affects the isocyanide stretching energy, a characteristic probe for ligand–metal interactions. While extensive correlations exist between structure and spectroscopy in molecular isocyanide–metal systems, interactions of isocyanide with crystalline metallic surfaces, where ligands often bind in various geometries, remain underexplored. Conventional vibrational spectroscopies such as infrared and Raman spectroscopies lack the molecular-scale resolution to distinguish this binding inhomogeneity. In contrast, inelastic electron tunneling spectroscopy with scanning tunneling microscopy (STM-IETS) directly visualizes ligand adsorption geometries and their vibrational signatures. Using STM-IETS, we investigate a metal-adsorbed <i>m</i>-terphenyl isocyanide ligand and find that the adsorption geometry on Cu(100) induces a significant shift in isocyanide stretching frequency, more prominent than replacing Cu(100) with Ag(111). Density functional theory confirms that this shift arises from atomic-scale variations in coordination environments. This study elucidates how precise binding influences the vibrational fingerprints of isocyanide ligands, an often-overlooked factor in understanding the isocyanide–metal interplay.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 22","pages":"9175–9180 9175–9180"},"PeriodicalIF":9.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.5c02454","citationCount":"0","resultStr":"{\"title\":\"Single-Molecule Vibrational Characterization of Binding Geometry Effects on Isocyanide–Metal Interactions\",\"authors\":\"Liya Bi,&nbsp;Zhe Wang,&nbsp;Krista P. Balto,&nbsp;Andrea R. Tao,&nbsp;Tod A. Pascal,&nbsp;Yanning Zhang,&nbsp;Joshua S. Figueroa* and Shaowei Li*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c0245410.1021/acs.nanolett.5c02454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Isocyanide–metal binding is governed by σ-donation and π-back-bonding, which affects the isocyanide stretching energy, a characteristic probe for ligand–metal interactions. While extensive correlations exist between structure and spectroscopy in molecular isocyanide–metal systems, interactions of isocyanide with crystalline metallic surfaces, where ligands often bind in various geometries, remain underexplored. Conventional vibrational spectroscopies such as infrared and Raman spectroscopies lack the molecular-scale resolution to distinguish this binding inhomogeneity. In contrast, inelastic electron tunneling spectroscopy with scanning tunneling microscopy (STM-IETS) directly visualizes ligand adsorption geometries and their vibrational signatures. Using STM-IETS, we investigate a metal-adsorbed <i>m</i>-terphenyl isocyanide ligand and find that the adsorption geometry on Cu(100) induces a significant shift in isocyanide stretching frequency, more prominent than replacing Cu(100) with Ag(111). Density functional theory confirms that this shift arises from atomic-scale variations in coordination environments. This study elucidates how precise binding influences the vibrational fingerprints of isocyanide ligands, an often-overlooked factor in understanding the isocyanide–metal interplay.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 22\",\"pages\":\"9175–9180 9175–9180\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.5c02454\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02454\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02454","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

异氰化物与金属的结合受σ给能和π背成键的支配,这影响了异氰化物的拉伸能,这是配体与金属相互作用的特征探针。虽然分子异氰化物-金属系统的结构和光谱之间存在广泛的相关性,但异氰化物与晶体金属表面的相互作用(配体通常以各种几何形状结合)仍未得到充分探索。传统的振动光谱,如红外和拉曼光谱,缺乏分子尺度的分辨率来区分这种结合不均匀性。相比之下,非弹性电子隧道光谱扫描隧道显微镜(STM-IETS)直接可视化配体的吸附几何形状和它们的振动特征。利用STM-IETS,我们研究了金属吸附的间terphenyl异氰化物配体,发现Cu(100)上的吸附几何结构诱导了异氰化物拉伸频率的显著变化,比用Ag(111)取代Cu(100)更为显著。密度泛函理论证实,这种转变是由协调环境中的原子尺度变化引起的。这项研究阐明了精确结合如何影响异氰化物配体的振动指纹,这是理解异氰化物-金属相互作用的一个经常被忽视的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-Molecule Vibrational Characterization of Binding Geometry Effects on Isocyanide–Metal Interactions

Isocyanide–metal binding is governed by σ-donation and π-back-bonding, which affects the isocyanide stretching energy, a characteristic probe for ligand–metal interactions. While extensive correlations exist between structure and spectroscopy in molecular isocyanide–metal systems, interactions of isocyanide with crystalline metallic surfaces, where ligands often bind in various geometries, remain underexplored. Conventional vibrational spectroscopies such as infrared and Raman spectroscopies lack the molecular-scale resolution to distinguish this binding inhomogeneity. In contrast, inelastic electron tunneling spectroscopy with scanning tunneling microscopy (STM-IETS) directly visualizes ligand adsorption geometries and their vibrational signatures. Using STM-IETS, we investigate a metal-adsorbed m-terphenyl isocyanide ligand and find that the adsorption geometry on Cu(100) induces a significant shift in isocyanide stretching frequency, more prominent than replacing Cu(100) with Ag(111). Density functional theory confirms that this shift arises from atomic-scale variations in coordination environments. This study elucidates how precise binding influences the vibrational fingerprints of isocyanide ligands, an often-overlooked factor in understanding the isocyanide–metal interplay.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信