高导热、高可靠性的协同液态金属-金刚石增强聚离子液体复合材料

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Baohao Yang, Jianhui Zeng, Xin Luo, Zhaoyu Lin, Meng Han, Linlin Ren, Rong Sun and Yimin Yao*, 
{"title":"高导热、高可靠性的协同液态金属-金刚石增强聚离子液体复合材料","authors":"Baohao Yang,&nbsp;Jianhui Zeng,&nbsp;Xin Luo,&nbsp;Zhaoyu Lin,&nbsp;Meng Han,&nbsp;Linlin Ren,&nbsp;Rong Sun and Yimin Yao*,&nbsp;","doi":"10.1021/acsami.5c0701410.1021/acsami.5c07014","DOIUrl":null,"url":null,"abstract":"<p >This study presents a thermally conductive composite material that combines poly(ionic liquid) (PIL) poly(1-octyl-3-vinylimidazole)bis(trifluoromethanesulfonyl)imide (P[OVIm]NTf<sub>2</sub>), liquid metal (LM), and diamond as dual fillers, totaling 85 vol % loading. The composite achieves a thermal conductivity of 14.2 W m<sup>–1</sup> K<sup>–1</sup>, a tensile elongation of 74%, and an interfacial adhesion strength of 0.99 MPa on steel substrates. Structural optimization and interfacial engineering contribute to its exceptional mechanical flexibility and processability, confirmed by dynamic rheological analysis. In chip packaging tests, the composite enhances heat dissipation efficiency by reducing interfacial thermal resistance. Diamond incorporation prevents LM oxidation, maintaining 99% surface coverage and minimal performance degradation after aging tests (−55 to 125 °C, 300 cycles; 150 °C, 1000 h). Chromium-plated diamond further improves reliability under high humidity and temperature. This ternary system resolves the trade-off between high filler loading and flexibility in thermal interface materials. Interfacial reinforcement and synergistic stabilization mechanisms balance thermal conductivity with long-term reliability. These findings promote the use of poly(ionic liquid)s in thermal management, offering a durable solution for high-power electronics, especially in extreme conditions. The study establishes a framework for designing advanced TIMs with optimized performance and stability.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 22","pages":"32949–32962 32949–32962"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Liquid Metal-Diamond-Reinforced Poly(ionic liquid) Composites for High Thermal Conductivity and Excellent Reliability\",\"authors\":\"Baohao Yang,&nbsp;Jianhui Zeng,&nbsp;Xin Luo,&nbsp;Zhaoyu Lin,&nbsp;Meng Han,&nbsp;Linlin Ren,&nbsp;Rong Sun and Yimin Yao*,&nbsp;\",\"doi\":\"10.1021/acsami.5c0701410.1021/acsami.5c07014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study presents a thermally conductive composite material that combines poly(ionic liquid) (PIL) poly(1-octyl-3-vinylimidazole)bis(trifluoromethanesulfonyl)imide (P[OVIm]NTf<sub>2</sub>), liquid metal (LM), and diamond as dual fillers, totaling 85 vol % loading. The composite achieves a thermal conductivity of 14.2 W m<sup>–1</sup> K<sup>–1</sup>, a tensile elongation of 74%, and an interfacial adhesion strength of 0.99 MPa on steel substrates. Structural optimization and interfacial engineering contribute to its exceptional mechanical flexibility and processability, confirmed by dynamic rheological analysis. In chip packaging tests, the composite enhances heat dissipation efficiency by reducing interfacial thermal resistance. Diamond incorporation prevents LM oxidation, maintaining 99% surface coverage and minimal performance degradation after aging tests (−55 to 125 °C, 300 cycles; 150 °C, 1000 h). Chromium-plated diamond further improves reliability under high humidity and temperature. This ternary system resolves the trade-off between high filler loading and flexibility in thermal interface materials. Interfacial reinforcement and synergistic stabilization mechanisms balance thermal conductivity with long-term reliability. These findings promote the use of poly(ionic liquid)s in thermal management, offering a durable solution for high-power electronics, especially in extreme conditions. The study establishes a framework for designing advanced TIMs with optimized performance and stability.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 22\",\"pages\":\"32949–32962 32949–32962\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c07014\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c07014","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种由聚离子液体(PIL)聚(1-辛基-3-乙烯基咪唑)双(三氟甲磺酰基)亚胺(P[OVIm]NTf2)、液态金属(LM)和金刚石作为双填料的导热复合材料,总负载量为85 vol %。该复合材料的导热系数为14.2 W m-1 K-1,拉伸伸长率为74%,在钢基体上的界面粘附强度为0.99 MPa。结构优化和界面工程有助于其卓越的机械灵活性和加工性,由动态流变分析证实。在芯片封装测试中,该复合材料通过降低界面热阻来提高散热效率。金刚石掺入防止LM氧化,在老化测试(- 55至125°C, 300次循环)后保持99%的表面覆盖率和最小的性能下降;150°C, 1000 h)。镀铬金刚石进一步提高了高湿度和高温度下的可靠性。这种三元体系解决了热界面材料中高填料负载和灵活性之间的权衡。界面增强和协同稳定机制平衡了导热性和长期可靠性。这些发现促进了聚离子液体在热管理中的应用,为大功率电子产品提供了持久的解决方案,特别是在极端条件下。该研究为设计具有优化性能和稳定性的先进TIMs建立了框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic Liquid Metal-Diamond-Reinforced Poly(ionic liquid) Composites for High Thermal Conductivity and Excellent Reliability

Synergistic Liquid Metal-Diamond-Reinforced Poly(ionic liquid) Composites for High Thermal Conductivity and Excellent Reliability

This study presents a thermally conductive composite material that combines poly(ionic liquid) (PIL) poly(1-octyl-3-vinylimidazole)bis(trifluoromethanesulfonyl)imide (P[OVIm]NTf2), liquid metal (LM), and diamond as dual fillers, totaling 85 vol % loading. The composite achieves a thermal conductivity of 14.2 W m–1 K–1, a tensile elongation of 74%, and an interfacial adhesion strength of 0.99 MPa on steel substrates. Structural optimization and interfacial engineering contribute to its exceptional mechanical flexibility and processability, confirmed by dynamic rheological analysis. In chip packaging tests, the composite enhances heat dissipation efficiency by reducing interfacial thermal resistance. Diamond incorporation prevents LM oxidation, maintaining 99% surface coverage and minimal performance degradation after aging tests (−55 to 125 °C, 300 cycles; 150 °C, 1000 h). Chromium-plated diamond further improves reliability under high humidity and temperature. This ternary system resolves the trade-off between high filler loading and flexibility in thermal interface materials. Interfacial reinforcement and synergistic stabilization mechanisms balance thermal conductivity with long-term reliability. These findings promote the use of poly(ionic liquid)s in thermal management, offering a durable solution for high-power electronics, especially in extreme conditions. The study establishes a framework for designing advanced TIMs with optimized performance and stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信