4.55 V高压LiCoO2阴极人工表面涂层阴极-电解质界面工程

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xianbin Wei, Qing Zhang, Mei Shen, Xiaobo Shi, Duojie Wu, Cheng Zhen, Menghao Li, Zhen Zhang, Xuming Yang, Jiangfeng Li and M. Danny Gu*, 
{"title":"4.55 V高压LiCoO2阴极人工表面涂层阴极-电解质界面工程","authors":"Xianbin Wei,&nbsp;Qing Zhang,&nbsp;Mei Shen,&nbsp;Xiaobo Shi,&nbsp;Duojie Wu,&nbsp;Cheng Zhen,&nbsp;Menghao Li,&nbsp;Zhen Zhang,&nbsp;Xuming Yang,&nbsp;Jiangfeng Li and M. Danny Gu*,&nbsp;","doi":"10.1021/acsami.4c2033110.1021/acsami.4c20331","DOIUrl":null,"url":null,"abstract":"<p >Increasing the high cutoff potential of LiCoO<sub>2</sub> (LCO) has proven challenging, due to lattice structure deterioration and cathode electrolyte interphase (CEI) instability. This work reports an effective strategy for tuning the CEI and stabilizing the cathode surface structure; we used atomic layer deposition (ALD) to synthesize Al<sub>2</sub>O<sub>3</sub>-capped LCO (ACLCO). Direct cryogenic transmission electron microscopy (cryo-TEM) characterization of the CEI reveals that, at 4.55 V voltage, ACLCO suppresses unstable CEI growth and enhances the stability of the layered LCO lattice. More specifically, as the cycling process drives electrolyte corrosion, the Al<sub>2</sub>O<sub>3</sub> surface coating partially transforms into a thermodynamically stable AlF<sub>3</sub> layer, which inhibits continuous side reactions in the high oxidation state, protecting the layered crystal lattice from transformation to rock-salt phases. Our comprehensive study describes a new technique for direct visualization of the CEI, demonstrates the efficacy of ACLCO, and reveals the mechanism by which it stabilizes the LCO cathode.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 22","pages":"32963–32972 32963–32972"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cathode-Electrolyte Interphase Engineering through Artificial Surface Coating in 4.55 V High-Voltage LiCoO2 Cathodes\",\"authors\":\"Xianbin Wei,&nbsp;Qing Zhang,&nbsp;Mei Shen,&nbsp;Xiaobo Shi,&nbsp;Duojie Wu,&nbsp;Cheng Zhen,&nbsp;Menghao Li,&nbsp;Zhen Zhang,&nbsp;Xuming Yang,&nbsp;Jiangfeng Li and M. Danny Gu*,&nbsp;\",\"doi\":\"10.1021/acsami.4c2033110.1021/acsami.4c20331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Increasing the high cutoff potential of LiCoO<sub>2</sub> (LCO) has proven challenging, due to lattice structure deterioration and cathode electrolyte interphase (CEI) instability. This work reports an effective strategy for tuning the CEI and stabilizing the cathode surface structure; we used atomic layer deposition (ALD) to synthesize Al<sub>2</sub>O<sub>3</sub>-capped LCO (ACLCO). Direct cryogenic transmission electron microscopy (cryo-TEM) characterization of the CEI reveals that, at 4.55 V voltage, ACLCO suppresses unstable CEI growth and enhances the stability of the layered LCO lattice. More specifically, as the cycling process drives electrolyte corrosion, the Al<sub>2</sub>O<sub>3</sub> surface coating partially transforms into a thermodynamically stable AlF<sub>3</sub> layer, which inhibits continuous side reactions in the high oxidation state, protecting the layered crystal lattice from transformation to rock-salt phases. Our comprehensive study describes a new technique for direct visualization of the CEI, demonstrates the efficacy of ACLCO, and reveals the mechanism by which it stabilizes the LCO cathode.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 22\",\"pages\":\"32963–32972 32963–32972\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c20331\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c20331","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于晶格结构恶化和阴极电解质界面(CEI)不稳定,提高LiCoO2 (LCO)的高截止电位具有挑战性。本文报道了一种有效的调整CEI和稳定阴极表面结构的策略;采用原子层沉积(ALD)法制备了al2o3包覆LCO (ACLCO)。直接低温透射电镜(cro - tem)表征表明,在4.55 V电压下,ACLCO抑制了不稳定的CEI生长,增强了层状LCO晶格的稳定性。更具体地说,当循环过程驱动电解质腐蚀时,Al2O3表面涂层部分转变为热力学稳定的AlF3层,这抑制了高氧化状态下的连续副反应,保护层状晶格不转变为岩盐相。我们的综合研究描述了一种直接可视化CEI的新技术,证明了ACLCO的有效性,并揭示了它稳定LCO阴极的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cathode-Electrolyte Interphase Engineering through Artificial Surface Coating in 4.55 V High-Voltage LiCoO2 Cathodes

Cathode-Electrolyte Interphase Engineering through Artificial Surface Coating in 4.55 V High-Voltage LiCoO2 Cathodes

Increasing the high cutoff potential of LiCoO2 (LCO) has proven challenging, due to lattice structure deterioration and cathode electrolyte interphase (CEI) instability. This work reports an effective strategy for tuning the CEI and stabilizing the cathode surface structure; we used atomic layer deposition (ALD) to synthesize Al2O3-capped LCO (ACLCO). Direct cryogenic transmission electron microscopy (cryo-TEM) characterization of the CEI reveals that, at 4.55 V voltage, ACLCO suppresses unstable CEI growth and enhances the stability of the layered LCO lattice. More specifically, as the cycling process drives electrolyte corrosion, the Al2O3 surface coating partially transforms into a thermodynamically stable AlF3 layer, which inhibits continuous side reactions in the high oxidation state, protecting the layered crystal lattice from transformation to rock-salt phases. Our comprehensive study describes a new technique for direct visualization of the CEI, demonstrates the efficacy of ACLCO, and reveals the mechanism by which it stabilizes the LCO cathode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信