用非互易光散射反演宇称时间反铁磁体中的nsamel矢量

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qianqian Xue,  and , Jian Zhou*, 
{"title":"用非互易光散射反演宇称时间反铁磁体中的nsamel矢量","authors":"Qianqian Xue,&nbsp; and ,&nbsp;Jian Zhou*,&nbsp;","doi":"10.1021/acs.nanolett.5c0157610.1021/acs.nanolett.5c01576","DOIUrl":null,"url":null,"abstract":"<p >Antiferromagnetic (AFM) spintronics has been receiving tremendous attention due to the ultrafast kinetics, zero stray field, immunity to external field, and potential for miniaturizing magnetic storage devices. The optical control of the AFM Néel vector has become an intriguing topic. Here, we propose a nonreciprocal light-scattering mechanism to flip the Néel vector in parity-time (<i></i><math><mi>PT</mi></math>) combined AFM multilayers by estimating the energy contrast between the bistable Néel polarization configurations. We illustrate our theory using a low-energy <b><i>k</i></b>·<b><i>p</i></b> model and perform <i>ab initio</i> calculations on two typical <i>A</i>-type AFM materials, MnBi<sub>2</sub>Te<sub>4</sub> and CrI<sub>3</sub> thin films. We show that both light handedness and incident photon frequency could control the relative stability between the bistable Néel vector states. According to this theory, our parameter-independent calculations on the AFM phase diagram predict results consistent with recent experiments. This mechanism provides an effective route to controlling the AFM order through ultrafast photomagnetic interactions.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 22","pages":"9054–9060 9054–9060"},"PeriodicalIF":9.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversing Néel Vector in Parity-Time Antiferromagnets by Nonreciprocal Light Scattering\",\"authors\":\"Qianqian Xue,&nbsp; and ,&nbsp;Jian Zhou*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c0157610.1021/acs.nanolett.5c01576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Antiferromagnetic (AFM) spintronics has been receiving tremendous attention due to the ultrafast kinetics, zero stray field, immunity to external field, and potential for miniaturizing magnetic storage devices. The optical control of the AFM Néel vector has become an intriguing topic. Here, we propose a nonreciprocal light-scattering mechanism to flip the Néel vector in parity-time (<i></i><math><mi>PT</mi></math>) combined AFM multilayers by estimating the energy contrast between the bistable Néel polarization configurations. We illustrate our theory using a low-energy <b><i>k</i></b>·<b><i>p</i></b> model and perform <i>ab initio</i> calculations on two typical <i>A</i>-type AFM materials, MnBi<sub>2</sub>Te<sub>4</sub> and CrI<sub>3</sub> thin films. We show that both light handedness and incident photon frequency could control the relative stability between the bistable Néel vector states. According to this theory, our parameter-independent calculations on the AFM phase diagram predict results consistent with recent experiments. This mechanism provides an effective route to controlling the AFM order through ultrafast photomagnetic interactions.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 22\",\"pages\":\"9054–9060 9054–9060\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01576\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01576","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

反铁磁(AFM)自旋电子学由于其超快动力学、无杂散场、不受外场影响以及在磁性存储器件小型化方面的潜力而受到广泛关注。原子力显微镜nsamel矢量的光学控制已经成为一个有趣的话题。在这里,我们提出了一种非互易光散射机制,通过估计双稳态nsamel偏振构型之间的能量对比来翻转nsamel矢量在奇偶-时间(PT)组合AFM多层中。我们使用低能k·p模型来说明我们的理论,并对两种典型的a型AFM材料MnBi2Te4和CrI3薄膜进行从头计算。我们发现,光旋性和入射光子频率都可以控制双稳态nsamel矢量态之间的相对稳定性。根据这一理论,我们对AFM相图的参数无关计算预测结果与最近的实验一致。该机制为通过超快光磁相互作用控制原子力显微镜的有序提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reversing Néel Vector in Parity-Time Antiferromagnets by Nonreciprocal Light Scattering

Reversing Néel Vector in Parity-Time Antiferromagnets by Nonreciprocal Light Scattering

Antiferromagnetic (AFM) spintronics has been receiving tremendous attention due to the ultrafast kinetics, zero stray field, immunity to external field, and potential for miniaturizing magnetic storage devices. The optical control of the AFM Néel vector has become an intriguing topic. Here, we propose a nonreciprocal light-scattering mechanism to flip the Néel vector in parity-time (PT) combined AFM multilayers by estimating the energy contrast between the bistable Néel polarization configurations. We illustrate our theory using a low-energy k·p model and perform ab initio calculations on two typical A-type AFM materials, MnBi2Te4 and CrI3 thin films. We show that both light handedness and incident photon frequency could control the relative stability between the bistable Néel vector states. According to this theory, our parameter-independent calculations on the AFM phase diagram predict results consistent with recent experiments. This mechanism provides an effective route to controlling the AFM order through ultrafast photomagnetic interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信