Shing-Yun Chang, Aidan P. McAnena, Joshua Kim and Jie Song*,
{"title":"通过工程两亲性调整透明质酸的微观结构:从动态交联凝胶到多层纳米颗粒","authors":"Shing-Yun Chang, Aidan P. McAnena, Joshua Kim and Jie Song*, ","doi":"10.1021/acsami.5c0473610.1021/acsami.5c04736","DOIUrl":null,"url":null,"abstract":"<p >Amphiphilic biopolymers are of interest for regenerative medicine applications due to their potential to interact with both hydrophobic and hydrophilic bioactive molecules and self-assemble into well-defined microstructures. We show that the amphiphilicity and microstructures of hydrophilic hyaluronic acid (HA) can be explicitly tuned by the stoichiometric integration of cholesterol to azide-functionalized HA via strain-promoted azide–alkyne cycloaddition (SPAAC). At low cholesterol contents, the hydrophobic interactions among the cholesterol units dynamically cross-link cholesteryl HA into physical gels showing enhanced and recoverable viscosities. By SPAAC cross-linking of remaining azides, the interdependence of physical and chemical cross-linking of cholesteryl HA is demonstrated. At higher cholesterol contents, cholesteryl HA self-assembles into multilamellar nanoparticles (NPs) composed of a core of alternately packed cholesterol-rich and HA-rich layers and a hydrated HA-rich outer layer. The amphiphilic NPs not only readily encapsulate hydrophobic compounds but also protect hydrophilic vitamin C from fast degradation in aqueous media. Rapid internalization of cholesteryl HA NPs by rat bone marrow-derived stromal cells and robust <i>in vitro</i> osteogenesis induced by NPs preloaded with dexamethasone and vitamin C were demonstrated. From viscoelastic physical gels, dual-cross-linked gels, to multilamellar NPs, cholesteryl HA with tailored amphiphilicity can be leveraged as versatile macromolecular building blocks for a wide range of regenerative medicine applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 22","pages":"31909–31922 31909–31922"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning Hyaluronic Acid Microstructures by Engineered Amphiphilicity: From Dynamically Cross-Linked Gels to Multilayered Nanoparticles\",\"authors\":\"Shing-Yun Chang, Aidan P. McAnena, Joshua Kim and Jie Song*, \",\"doi\":\"10.1021/acsami.5c0473610.1021/acsami.5c04736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Amphiphilic biopolymers are of interest for regenerative medicine applications due to their potential to interact with both hydrophobic and hydrophilic bioactive molecules and self-assemble into well-defined microstructures. We show that the amphiphilicity and microstructures of hydrophilic hyaluronic acid (HA) can be explicitly tuned by the stoichiometric integration of cholesterol to azide-functionalized HA via strain-promoted azide–alkyne cycloaddition (SPAAC). At low cholesterol contents, the hydrophobic interactions among the cholesterol units dynamically cross-link cholesteryl HA into physical gels showing enhanced and recoverable viscosities. By SPAAC cross-linking of remaining azides, the interdependence of physical and chemical cross-linking of cholesteryl HA is demonstrated. At higher cholesterol contents, cholesteryl HA self-assembles into multilamellar nanoparticles (NPs) composed of a core of alternately packed cholesterol-rich and HA-rich layers and a hydrated HA-rich outer layer. The amphiphilic NPs not only readily encapsulate hydrophobic compounds but also protect hydrophilic vitamin C from fast degradation in aqueous media. Rapid internalization of cholesteryl HA NPs by rat bone marrow-derived stromal cells and robust <i>in vitro</i> osteogenesis induced by NPs preloaded with dexamethasone and vitamin C were demonstrated. From viscoelastic physical gels, dual-cross-linked gels, to multilamellar NPs, cholesteryl HA with tailored amphiphilicity can be leveraged as versatile macromolecular building blocks for a wide range of regenerative medicine applications.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 22\",\"pages\":\"31909–31922 31909–31922\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c04736\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c04736","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tuning Hyaluronic Acid Microstructures by Engineered Amphiphilicity: From Dynamically Cross-Linked Gels to Multilayered Nanoparticles
Amphiphilic biopolymers are of interest for regenerative medicine applications due to their potential to interact with both hydrophobic and hydrophilic bioactive molecules and self-assemble into well-defined microstructures. We show that the amphiphilicity and microstructures of hydrophilic hyaluronic acid (HA) can be explicitly tuned by the stoichiometric integration of cholesterol to azide-functionalized HA via strain-promoted azide–alkyne cycloaddition (SPAAC). At low cholesterol contents, the hydrophobic interactions among the cholesterol units dynamically cross-link cholesteryl HA into physical gels showing enhanced and recoverable viscosities. By SPAAC cross-linking of remaining azides, the interdependence of physical and chemical cross-linking of cholesteryl HA is demonstrated. At higher cholesterol contents, cholesteryl HA self-assembles into multilamellar nanoparticles (NPs) composed of a core of alternately packed cholesterol-rich and HA-rich layers and a hydrated HA-rich outer layer. The amphiphilic NPs not only readily encapsulate hydrophobic compounds but also protect hydrophilic vitamin C from fast degradation in aqueous media. Rapid internalization of cholesteryl HA NPs by rat bone marrow-derived stromal cells and robust in vitro osteogenesis induced by NPs preloaded with dexamethasone and vitamin C were demonstrated. From viscoelastic physical gels, dual-cross-linked gels, to multilamellar NPs, cholesteryl HA with tailored amphiphilicity can be leveraged as versatile macromolecular building blocks for a wide range of regenerative medicine applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.