芳香族苯甲酸类似物胡椒碱共晶的机械合成及其理化性质研究

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mohsin Khan, Diptajyoti Gogoi, Bishal Pal Hazarika, Mihails Arhangelskis, Silpi S. Borah, Khaled Althubeiti, Shrinivas Purandare and Ranjit Thakuria*, 
{"title":"芳香族苯甲酸类似物胡椒碱共晶的机械合成及其理化性质研究","authors":"Mohsin Khan,&nbsp;Diptajyoti Gogoi,&nbsp;Bishal Pal Hazarika,&nbsp;Mihails Arhangelskis,&nbsp;Silpi S. Borah,&nbsp;Khaled Althubeiti,&nbsp;Shrinivas Purandare and Ranjit Thakuria*,&nbsp;","doi":"10.1021/acs.cgd.5c0052010.1021/acs.cgd.5c00520","DOIUrl":null,"url":null,"abstract":"<p >Cocrystallization of piperine (PIPE), a natural alkaloid with several GRAS coformers, namely, 4HBA, 26DHBA, and PABA, resulted in the formation of new cocrystals. All of the synthesized cocrystals were further characterized using PXRD and single-crystal XRD analysis. Based on our investigation, it was observed that PIPE•PABA monohydrate cocrystal is the most stable form among all the synthesized cocrystals and does not undergo cocrystal dissociation and/or phase transformation under a humid environment. On the other hand, slurry stirring shows possible phase transformation of the PIPE•4HBA cocrystal and dissociation in the case of the PIPE•26DHBA cocrystal. The absence of a hydrogen bond donor group in PIPE might be the reason behind limited reports on PIPE cocrystals.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 11","pages":"4082–4087 4082–4087"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanosynthesis of Piperine Cocrystals with an Aromatic Benzoic Acid Analogue and Their Physicochemical Property Study\",\"authors\":\"Mohsin Khan,&nbsp;Diptajyoti Gogoi,&nbsp;Bishal Pal Hazarika,&nbsp;Mihails Arhangelskis,&nbsp;Silpi S. Borah,&nbsp;Khaled Althubeiti,&nbsp;Shrinivas Purandare and Ranjit Thakuria*,&nbsp;\",\"doi\":\"10.1021/acs.cgd.5c0052010.1021/acs.cgd.5c00520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cocrystallization of piperine (PIPE), a natural alkaloid with several GRAS coformers, namely, 4HBA, 26DHBA, and PABA, resulted in the formation of new cocrystals. All of the synthesized cocrystals were further characterized using PXRD and single-crystal XRD analysis. Based on our investigation, it was observed that PIPE•PABA monohydrate cocrystal is the most stable form among all the synthesized cocrystals and does not undergo cocrystal dissociation and/or phase transformation under a humid environment. On the other hand, slurry stirring shows possible phase transformation of the PIPE•4HBA cocrystal and dissociation in the case of the PIPE•26DHBA cocrystal. The absence of a hydrogen bond donor group in PIPE might be the reason behind limited reports on PIPE cocrystals.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"25 11\",\"pages\":\"4082–4087 4082–4087\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00520\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00520","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

胡椒碱(PIPE)是一种天然生物碱,具有几种GRAS共晶,即4HBA, 26DHBA和PABA,可形成新的共晶。利用PXRD和单晶XRD进一步对合成的共晶进行了表征。根据我们的研究,我们发现PIPE•PABA一水共晶是所有合成的共晶中最稳定的形式,并且在潮湿环境下不会发生共晶解离和/或相变。另一方面,浆液搅拌表明PIPE•4HBA共晶可能发生相变,而PIPE•26DHBA共晶可能发生解离。PIPE中缺乏氢键给基可能是PIPE共晶报道有限的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanosynthesis of Piperine Cocrystals with an Aromatic Benzoic Acid Analogue and Their Physicochemical Property Study

Cocrystallization of piperine (PIPE), a natural alkaloid with several GRAS coformers, namely, 4HBA, 26DHBA, and PABA, resulted in the formation of new cocrystals. All of the synthesized cocrystals were further characterized using PXRD and single-crystal XRD analysis. Based on our investigation, it was observed that PIPE•PABA monohydrate cocrystal is the most stable form among all the synthesized cocrystals and does not undergo cocrystal dissociation and/or phase transformation under a humid environment. On the other hand, slurry stirring shows possible phase transformation of the PIPE•4HBA cocrystal and dissociation in the case of the PIPE•26DHBA cocrystal. The absence of a hydrogen bond donor group in PIPE might be the reason behind limited reports on PIPE cocrystals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信