超越传统掺杂:先进硝酸盐还原的硫诱导电子和界面动力学

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qinghao Zhang, Weilan Ye, Wenda Chen, Wei Zeng, Yingqi Xu, Bin Liang, Qixin Wang, Shuyuan Wu, Xiao Dong, Yongliang Li, Xiangzhong Ren, Huiqun Cao, Dantong Zhang, Xiaopeng Han, Shenghua Ye, Jianhong Liu, Qianling Zhang
{"title":"超越传统掺杂:先进硝酸盐还原的硫诱导电子和界面动力学","authors":"Qinghao Zhang, Weilan Ye, Wenda Chen, Wei Zeng, Yingqi Xu, Bin Liang, Qixin Wang, Shuyuan Wu, Xiao Dong, Yongliang Li, Xiangzhong Ren, Huiqun Cao, Dantong Zhang, Xiaopeng Han, Shenghua Ye, Jianhong Liu, Qianling Zhang","doi":"10.1002/anie.202504815","DOIUrl":null,"url":null,"abstract":"Electrochemical nitrate reduction reaction (NO3−RR) to ammonia (NH3) offers a sustainable route for NH3 synthesis and environmental remediation, yet it is hindered by sluggish kinetics due to inefficient proton-coupled electron transfer (PCET) processes and inadequate electrocatalyst design. Conventional approaches primarily focus on regulating the bulk electronic modulation of the electrocatalyst while neglecting interfacial water dynamics. Here, we propose a dual-functional sulfur doping strategy in Co3O4 (S-Co3O4) to simultaneously enhance bulk conductivity and optimize interfacial proton transfer. Through innovative benzene sulfonyl chloride blocking experiment, in situ spectroscopic analyses, and kinetic isotope effect studies, we reveal that sulfur doping narrows the band-gap of Co3O4 to enhance bulk charge transport while disrupting rigid hydrogen-bond network of water in the electric double layer, the weakly hydrogen-bonded H2O reduces the dissociation barrier and facilitates proton supply for nitrate hydrogenation. The proposed “electronic-interfacial synergy” strategy establishes a transformative paradigm for designing electrocatalysts in PCET-driven reactions, advancing sustainable energy conversion and environmental applications.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"46 6 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond Conventional Doping: Sulfur-Induced Electronic and Interfacial Dynamics for Advanced Nitrate Reduction\",\"authors\":\"Qinghao Zhang, Weilan Ye, Wenda Chen, Wei Zeng, Yingqi Xu, Bin Liang, Qixin Wang, Shuyuan Wu, Xiao Dong, Yongliang Li, Xiangzhong Ren, Huiqun Cao, Dantong Zhang, Xiaopeng Han, Shenghua Ye, Jianhong Liu, Qianling Zhang\",\"doi\":\"10.1002/anie.202504815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical nitrate reduction reaction (NO3−RR) to ammonia (NH3) offers a sustainable route for NH3 synthesis and environmental remediation, yet it is hindered by sluggish kinetics due to inefficient proton-coupled electron transfer (PCET) processes and inadequate electrocatalyst design. Conventional approaches primarily focus on regulating the bulk electronic modulation of the electrocatalyst while neglecting interfacial water dynamics. Here, we propose a dual-functional sulfur doping strategy in Co3O4 (S-Co3O4) to simultaneously enhance bulk conductivity and optimize interfacial proton transfer. Through innovative benzene sulfonyl chloride blocking experiment, in situ spectroscopic analyses, and kinetic isotope effect studies, we reveal that sulfur doping narrows the band-gap of Co3O4 to enhance bulk charge transport while disrupting rigid hydrogen-bond network of water in the electric double layer, the weakly hydrogen-bonded H2O reduces the dissociation barrier and facilitates proton supply for nitrate hydrogenation. The proposed “electronic-interfacial synergy” strategy establishes a transformative paradigm for designing electrocatalysts in PCET-driven reactions, advancing sustainable energy conversion and environmental applications.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"46 6 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202504815\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202504815","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学硝酸还原反应(NO3−RR)制氨(NH3)为氨的合成和环境修复提供了一条可持续的途径,但由于质子耦合电子转移(PCET)过程效率低下和电催化剂设计不完善,反应动力学缓慢,阻碍了氨的合成和环境修复。传统的方法主要集中在调节电催化剂的体电子调制,而忽略了界面水动力学。在这里,我们提出了一种双功能的硫掺杂策略在Co3O4 (S-Co3O4)中,同时提高体电导率和优化界面质子转移。通过创新的苯磺酰氯阻断实验、原位光谱分析和动力学同位素效应研究,我们发现硫掺杂缩小了Co3O4的带隙,增强了体电荷输运,同时破坏了双电层中水的刚性氢键网络,弱氢键的H2O降低了解离势垒,促进了硝酸盐加氢的质子供应。提出的“电子界面协同”策略为设计pcet驱动反应中的电催化剂建立了一个变革范例,促进了可持续能源转换和环境应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond Conventional Doping: Sulfur-Induced Electronic and Interfacial Dynamics for Advanced Nitrate Reduction
Electrochemical nitrate reduction reaction (NO3−RR) to ammonia (NH3) offers a sustainable route for NH3 synthesis and environmental remediation, yet it is hindered by sluggish kinetics due to inefficient proton-coupled electron transfer (PCET) processes and inadequate electrocatalyst design. Conventional approaches primarily focus on regulating the bulk electronic modulation of the electrocatalyst while neglecting interfacial water dynamics. Here, we propose a dual-functional sulfur doping strategy in Co3O4 (S-Co3O4) to simultaneously enhance bulk conductivity and optimize interfacial proton transfer. Through innovative benzene sulfonyl chloride blocking experiment, in situ spectroscopic analyses, and kinetic isotope effect studies, we reveal that sulfur doping narrows the band-gap of Co3O4 to enhance bulk charge transport while disrupting rigid hydrogen-bond network of water in the electric double layer, the weakly hydrogen-bonded H2O reduces the dissociation barrier and facilitates proton supply for nitrate hydrogenation. The proposed “electronic-interfacial synergy” strategy establishes a transformative paradigm for designing electrocatalysts in PCET-driven reactions, advancing sustainable energy conversion and environmental applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信