基于时空等离子激元激发的动态磁振子晶体

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nikolai Kuznetsov, Huajun Qin, Lukáš Flajšman, Sebastiaan van Dijken
{"title":"基于时空等离子激元激发的动态磁振子晶体","authors":"Nikolai Kuznetsov, Huajun Qin, Lukáš Flajšman, Sebastiaan van Dijken","doi":"10.1002/adma.202502474","DOIUrl":null,"url":null,"abstract":"Metamaterials, designed to exhibit properties beyond those found in nature, enable unprecedented control over physical phenomena through flexible band structure engineering. This work introduces a hybrid magnonic-plasmonic metamaterial that allows spatiotemporal manipulation of spin-wave transport at micrometer scales and sub-microsecond timescales. The system integrates a plasmonic metamaterial, comprising Au nanodisk arrays arranged in a 1D periodic stripe pattern, with a low-damping yttrium iron garnet (YIG) film as the spin-wave transport medium. Short laser pulses (100−500 ns) excite surface lattice resonances (SLRs) in the plasmonic stripes, inducing thermoplasmonic heating and generating a striped temperature profile. This dynamic thermal modulation periodically alters the YIG film's saturation magnetization, forming a laser-controlled magnonic crystal. Time-resolved propagating spin-wave spectroscopy reveals tunable bandgaps and minibands arising from Bragg reflection. By adjusting the plasmonic stripe pattern, laser pulse duration, or power, this system enables precise control over spin-wave transport, paving the way for reconfigurable wave-based computing devices.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"38 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Magnonic Crystals Based on Spatiotemporal Plasmon Excitation\",\"authors\":\"Nikolai Kuznetsov, Huajun Qin, Lukáš Flajšman, Sebastiaan van Dijken\",\"doi\":\"10.1002/adma.202502474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metamaterials, designed to exhibit properties beyond those found in nature, enable unprecedented control over physical phenomena through flexible band structure engineering. This work introduces a hybrid magnonic-plasmonic metamaterial that allows spatiotemporal manipulation of spin-wave transport at micrometer scales and sub-microsecond timescales. The system integrates a plasmonic metamaterial, comprising Au nanodisk arrays arranged in a 1D periodic stripe pattern, with a low-damping yttrium iron garnet (YIG) film as the spin-wave transport medium. Short laser pulses (100−500 ns) excite surface lattice resonances (SLRs) in the plasmonic stripes, inducing thermoplasmonic heating and generating a striped temperature profile. This dynamic thermal modulation periodically alters the YIG film's saturation magnetization, forming a laser-controlled magnonic crystal. Time-resolved propagating spin-wave spectroscopy reveals tunable bandgaps and minibands arising from Bragg reflection. By adjusting the plasmonic stripe pattern, laser pulse duration, or power, this system enables precise control over spin-wave transport, paving the way for reconfigurable wave-based computing devices.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202502474\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202502474","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超材料,旨在展示超越自然界的特性,通过柔性带结构工程实现对物理现象的前所未有的控制。这项工作介绍了一种混合磁-等离子体超材料,它允许在微米尺度和亚微秒时间尺度上对自旋波输运进行时空操纵。该系统集成了一种等离子体超材料,该材料由排列成一维周期性条纹图案的金纳米盘阵列组成,并以低阻尼钇铁石榴石(YIG)薄膜作为自旋波传输介质。短激光脉冲(100 ~ 500 ns)激发等离子体条纹中的表面晶格共振(slr),引起热等离子体加热并产生条纹温度分布。这种动态热调制周期性地改变YIG薄膜的饱和磁化强度,形成激光控制的磁振子晶体。时间分辨传播自旋波光谱揭示了可调谐的带隙和由布拉格反射产生的小带。通过调整等离子体条纹模式、激光脉冲持续时间或功率,该系统可以精确控制自旋波传输,为可重构的基于波的计算设备铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic Magnonic Crystals Based on Spatiotemporal Plasmon Excitation

Dynamic Magnonic Crystals Based on Spatiotemporal Plasmon Excitation
Metamaterials, designed to exhibit properties beyond those found in nature, enable unprecedented control over physical phenomena through flexible band structure engineering. This work introduces a hybrid magnonic-plasmonic metamaterial that allows spatiotemporal manipulation of spin-wave transport at micrometer scales and sub-microsecond timescales. The system integrates a plasmonic metamaterial, comprising Au nanodisk arrays arranged in a 1D periodic stripe pattern, with a low-damping yttrium iron garnet (YIG) film as the spin-wave transport medium. Short laser pulses (100−500 ns) excite surface lattice resonances (SLRs) in the plasmonic stripes, inducing thermoplasmonic heating and generating a striped temperature profile. This dynamic thermal modulation periodically alters the YIG film's saturation magnetization, forming a laser-controlled magnonic crystal. Time-resolved propagating spin-wave spectroscopy reveals tunable bandgaps and minibands arising from Bragg reflection. By adjusting the plasmonic stripe pattern, laser pulse duration, or power, this system enables precise control over spin-wave transport, paving the way for reconfigurable wave-based computing devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信