Li2B12H12/ZrO2纳米复合材料增强全固态锂金属电池离子电导率和电化学性能

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jonas D. Hehn, Hendrik P. Rodenburg, Masoud Lazemi, Juliette C. Verschoor, Marta Perxés Perich, Martin Sundermann, Hlynur Gretarsson, Jessi E. S. van der Hoeven, Frank M. F. de Groot, Petra E. de Jongh, Peter Ngene
{"title":"Li2B12H12/ZrO2纳米复合材料增强全固态锂金属电池离子电导率和电化学性能","authors":"Jonas D. Hehn, Hendrik P. Rodenburg, Masoud Lazemi, Juliette C. Verschoor, Marta Perxés Perich, Martin Sundermann, Hlynur Gretarsson, Jessi E. S. van der Hoeven, Frank M. F. de Groot, Petra E. de Jongh, Peter Ngene","doi":"10.1021/acsami.5c01939","DOIUrl":null,"url":null,"abstract":"Solid-state electrolytes play a key role in the development of safe and high-capacity all-solid-state batteries. Complex hydrides such as Li<sub>2</sub>B<sub>12</sub>H<sub>12</sub> are attractive as solid electrolytes due to their low weight and good electrochemical stability, but suffer from low conductivities at room temperature. Herein, we report a three-order-magnitude increase in the ionic conductivity of Li<sub>2</sub>B<sub>12</sub>H<sub>12</sub> upon nanocomposite formation with ZrO<sub>2</sub> via mechanochemical treatment, reaching 2.9 × 10<sup>–4</sup> S cm<sup>–1</sup> at 30 °C. Results from infrared spectroscopy, X-ray Raman scattering and electron microscopy coupled with electron energy loss spectroscopy suggest that the increased ionic conductivity is due to strong interfacial interaction/reaction between Li<sub>2</sub>B<sub>12</sub>H<sub>12</sub> and ZrO<sub>2</sub>. This leads to a highly defective interphase region where the Li, B, Zr, and O chemical environments are distinctively different from the bulk Li<sub>2</sub>B<sub>12</sub>H<sub>12</sub> and ZrO<sub>2</sub>. The improved ionic conductivity of the nanocomposite compared to the pristine material enabled the realization of all-solid-state batteries with a Li metal anode and both TiS<sub>2</sub> and LiFePO<sub>4</sub> cathodes. We demonstrate the suitability of the nanocomposite at various charging rates up to C/2 (0.34 mA cm<sup>–2</sup>) for over 170 cycles at 40–60 °C (Li|Li<sub>2</sub>B<sub>12</sub>H<sub>12</sub>/ZrO<sub>2</sub>|TiS<sub>2</sub>).","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"8 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Ionic Conductivity and Electrochemical Properties of Li2B12H12/ZrO2 Nanocomposites for All-Solid-State Lithium Metal Batteries\",\"authors\":\"Jonas D. Hehn, Hendrik P. Rodenburg, Masoud Lazemi, Juliette C. Verschoor, Marta Perxés Perich, Martin Sundermann, Hlynur Gretarsson, Jessi E. S. van der Hoeven, Frank M. F. de Groot, Petra E. de Jongh, Peter Ngene\",\"doi\":\"10.1021/acsami.5c01939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state electrolytes play a key role in the development of safe and high-capacity all-solid-state batteries. Complex hydrides such as Li<sub>2</sub>B<sub>12</sub>H<sub>12</sub> are attractive as solid electrolytes due to their low weight and good electrochemical stability, but suffer from low conductivities at room temperature. Herein, we report a three-order-magnitude increase in the ionic conductivity of Li<sub>2</sub>B<sub>12</sub>H<sub>12</sub> upon nanocomposite formation with ZrO<sub>2</sub> via mechanochemical treatment, reaching 2.9 × 10<sup>–4</sup> S cm<sup>–1</sup> at 30 °C. Results from infrared spectroscopy, X-ray Raman scattering and electron microscopy coupled with electron energy loss spectroscopy suggest that the increased ionic conductivity is due to strong interfacial interaction/reaction between Li<sub>2</sub>B<sub>12</sub>H<sub>12</sub> and ZrO<sub>2</sub>. This leads to a highly defective interphase region where the Li, B, Zr, and O chemical environments are distinctively different from the bulk Li<sub>2</sub>B<sub>12</sub>H<sub>12</sub> and ZrO<sub>2</sub>. The improved ionic conductivity of the nanocomposite compared to the pristine material enabled the realization of all-solid-state batteries with a Li metal anode and both TiS<sub>2</sub> and LiFePO<sub>4</sub> cathodes. We demonstrate the suitability of the nanocomposite at various charging rates up to C/2 (0.34 mA cm<sup>–2</sup>) for over 170 cycles at 40–60 °C (Li|Li<sub>2</sub>B<sub>12</sub>H<sub>12</sub>/ZrO<sub>2</sub>|TiS<sub>2</sub>).\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c01939\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c01939","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固态电解质是研制安全、高容量全固态电池的关键。Li2B12H12等络合氢化物因其重量轻、电化学稳定性好而成为固体电解质,但在室温下电导率较低。在此,我们报告了Li2B12H12通过机械化学处理与ZrO2形成纳米复合材料后,离子电导率提高了三个数量级,在30°C下达到2.9 × 10-4 S cm-1。红外光谱、x射线拉曼散射、电子显微镜和电子能量损失光谱结果表明,离子电导率的提高是由于Li2B12H12和ZrO2之间强烈的界面相互作用/反应所致。这导致了一个高度缺陷的相间区,其中Li, B, Zr和O的化学环境与本体Li2B12H12和ZrO2明显不同。与原始材料相比,纳米复合材料的离子电导率有所提高,从而实现了锂金属阳极和TiS2和LiFePO4阴极的全固态电池。我们证明了纳米复合材料在40-60°C (Li|Li2B12H12/ZrO2|TiS2)下,在高达C/2 (0.34 mA cm-2)的各种充电速率下,超过170次循环的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Ionic Conductivity and Electrochemical Properties of Li2B12H12/ZrO2 Nanocomposites for All-Solid-State Lithium Metal Batteries

Enhanced Ionic Conductivity and Electrochemical Properties of Li2B12H12/ZrO2 Nanocomposites for All-Solid-State Lithium Metal Batteries
Solid-state electrolytes play a key role in the development of safe and high-capacity all-solid-state batteries. Complex hydrides such as Li2B12H12 are attractive as solid electrolytes due to their low weight and good electrochemical stability, but suffer from low conductivities at room temperature. Herein, we report a three-order-magnitude increase in the ionic conductivity of Li2B12H12 upon nanocomposite formation with ZrO2 via mechanochemical treatment, reaching 2.9 × 10–4 S cm–1 at 30 °C. Results from infrared spectroscopy, X-ray Raman scattering and electron microscopy coupled with electron energy loss spectroscopy suggest that the increased ionic conductivity is due to strong interfacial interaction/reaction between Li2B12H12 and ZrO2. This leads to a highly defective interphase region where the Li, B, Zr, and O chemical environments are distinctively different from the bulk Li2B12H12 and ZrO2. The improved ionic conductivity of the nanocomposite compared to the pristine material enabled the realization of all-solid-state batteries with a Li metal anode and both TiS2 and LiFePO4 cathodes. We demonstrate the suitability of the nanocomposite at various charging rates up to C/2 (0.34 mA cm–2) for over 170 cycles at 40–60 °C (Li|Li2B12H12/ZrO2|TiS2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信