近中性水氧化还原液流电池中Fe -络合物的自旋态和聚类效应

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Donghwi Ko, Seongyeon Kwon, Jantakan Nedsaengtip, Yohan Kim, Yunseop Choi, Dongwook Kim, Xingyi Lyu, Ruchi Dixit, Yugang Zhang, Prof. Dr. Tao Li, Prof. Dr. Jongcheol Seo, Prof. Dr. Mu-Hyun Baik, Prof. Dr. Hye Ryung Byon
{"title":"近中性水氧化还原液流电池中Fe -络合物的自旋态和聚类效应","authors":"Donghwi Ko,&nbsp;Seongyeon Kwon,&nbsp;Jantakan Nedsaengtip,&nbsp;Yohan Kim,&nbsp;Yunseop Choi,&nbsp;Dongwook Kim,&nbsp;Xingyi Lyu,&nbsp;Ruchi Dixit,&nbsp;Yugang Zhang,&nbsp;Prof. Dr. Tao Li,&nbsp;Prof. Dr. Jongcheol Seo,&nbsp;Prof. Dr. Mu-Hyun Baik,&nbsp;Prof. Dr. Hye Ryung Byon","doi":"10.1002/anie.202505747","DOIUrl":null,"url":null,"abstract":"<p>Cost-effective redox-active materials are essential for advancing redox flow batteries (RFBs). Iron, with its abundance and suitability as a redox couple, is a promising candidate; however, achieving stable and fast redox reactions in aqueous RFBs remains a challenge. This study presents an Fe-based negolyte stabilized by a hexadentate ligand, where Fe–ligand bonds are enhanced through intermolecular interactions. The sulfonate-substituted Fe complex exhibits a formal potential of −0.44 V versus Ag/AgCl and an exceptionally high rate constant of 0.69 cm s<sup>−1</sup>. Near-neutral RFBs incorporating 0.5 M Fe complex show excellent cycling stability, with no discernible capacity fading over 300 cycles. This performance is attributed to intermolecular hydrogen bonds that reinforce Fe–ligand coordination and promote the formation of stable trimeric clusters. <i>Operando</i> electrochemical Raman spectroscopy and density functional theory reveal that π-backdonation from Fe(II) to the imino-phenolate moiety further stabilizes the complex after reduction. In contrast, the hydroxyl-substituted complex exhibits inferior stability due to weaker hydrogen bonding and less pronounced π-backdonation. These findings underscore the importance of ligand design and intermolecular interactions in developing cost-effective, high-performance redox-active materials for aqueous RFBs.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 32","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin-State and Clustering Effects in Fe-Complex Negolytes for Near-Neutral Aqueous Redox Flow Batteries\",\"authors\":\"Donghwi Ko,&nbsp;Seongyeon Kwon,&nbsp;Jantakan Nedsaengtip,&nbsp;Yohan Kim,&nbsp;Yunseop Choi,&nbsp;Dongwook Kim,&nbsp;Xingyi Lyu,&nbsp;Ruchi Dixit,&nbsp;Yugang Zhang,&nbsp;Prof. Dr. Tao Li,&nbsp;Prof. Dr. Jongcheol Seo,&nbsp;Prof. Dr. Mu-Hyun Baik,&nbsp;Prof. Dr. Hye Ryung Byon\",\"doi\":\"10.1002/anie.202505747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cost-effective redox-active materials are essential for advancing redox flow batteries (RFBs). Iron, with its abundance and suitability as a redox couple, is a promising candidate; however, achieving stable and fast redox reactions in aqueous RFBs remains a challenge. This study presents an Fe-based negolyte stabilized by a hexadentate ligand, where Fe–ligand bonds are enhanced through intermolecular interactions. The sulfonate-substituted Fe complex exhibits a formal potential of −0.44 V versus Ag/AgCl and an exceptionally high rate constant of 0.69 cm s<sup>−1</sup>. Near-neutral RFBs incorporating 0.5 M Fe complex show excellent cycling stability, with no discernible capacity fading over 300 cycles. This performance is attributed to intermolecular hydrogen bonds that reinforce Fe–ligand coordination and promote the formation of stable trimeric clusters. <i>Operando</i> electrochemical Raman spectroscopy and density functional theory reveal that π-backdonation from Fe(II) to the imino-phenolate moiety further stabilizes the complex after reduction. In contrast, the hydroxyl-substituted complex exhibits inferior stability due to weaker hydrogen bonding and less pronounced π-backdonation. These findings underscore the importance of ligand design and intermolecular interactions in developing cost-effective, high-performance redox-active materials for aqueous RFBs.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 32\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505747\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505747","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有成本效益的氧化还原活性材料对于推进氧化还原液流电池(rfb)至关重要。铁具有丰富度和适宜性,是一个很有前途的候选物质;然而,在rfb中实现稳定快速的氧化还原反应仍然是一个挑战。本研究提出了一种由六齿配体稳定的铁基无溶质,其中铁配体的键通过分子间相互作用得到增强。磺酸盐取代的Fe配合物对Ag/AgCl的形式电位为-0.44 V,速率常数为0.69 cm s-1。含0.5 M Fe络合物的近中性rfb表现出优异的循环稳定性,在300次循环中没有明显的容量衰减。这种性能归因于分子间氢键加强了铁配体的配位,促进了稳定三聚体簇的形成。Operando电化学拉曼光谱和密度泛函理论表明,Fe(II)向亚氨基酚酸酯部分的π -反向捐赠进一步稳定了还原后的配合物。相反,羟基取代配合物的稳定性较差,因为氢键较弱,且π -反捐赠不明显。这些发现强调了配体设计和分子间相互作用在开发具有成本效益、高性能的水性rfb氧化还原活性材料中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spin-State and Clustering Effects in Fe-Complex Negolytes for Near-Neutral Aqueous Redox Flow Batteries

Spin-State and Clustering Effects in Fe-Complex Negolytes for Near-Neutral Aqueous Redox Flow Batteries

Cost-effective redox-active materials are essential for advancing redox flow batteries (RFBs). Iron, with its abundance and suitability as a redox couple, is a promising candidate; however, achieving stable and fast redox reactions in aqueous RFBs remains a challenge. This study presents an Fe-based negolyte stabilized by a hexadentate ligand, where Fe–ligand bonds are enhanced through intermolecular interactions. The sulfonate-substituted Fe complex exhibits a formal potential of −0.44 V versus Ag/AgCl and an exceptionally high rate constant of 0.69 cm s−1. Near-neutral RFBs incorporating 0.5 M Fe complex show excellent cycling stability, with no discernible capacity fading over 300 cycles. This performance is attributed to intermolecular hydrogen bonds that reinforce Fe–ligand coordination and promote the formation of stable trimeric clusters. Operando electrochemical Raman spectroscopy and density functional theory reveal that π-backdonation from Fe(II) to the imino-phenolate moiety further stabilizes the complex after reduction. In contrast, the hydroxyl-substituted complex exhibits inferior stability due to weaker hydrogen bonding and less pronounced π-backdonation. These findings underscore the importance of ligand design and intermolecular interactions in developing cost-effective, high-performance redox-active materials for aqueous RFBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信