Waner Hou, Wanchao Yao, Xingyu Zhao, Kamran Rehan, Yi Li, Yue Li, Eric Lutz, Yiheng Lin, Jiangfeng Du
{"title":"结合循环机器的能源效率和量子优势","authors":"Waner Hou, Wanchao Yao, Xingyu Zhao, Kamran Rehan, Yi Li, Yue Li, Eric Lutz, Yiheng Lin, Jiangfeng Du","doi":"10.1038/s41467-025-60179-5","DOIUrl":null,"url":null,"abstract":"<p>Energy efficiency and quantum advantage are two important features of quantum devices. We here report an experimental realization that combines both features in a quantum engine coupled to a quantum battery that stores the produced work, using a single ion in a linear Paul trap. We begin by establishing the quantum nature of the device by observing nonclassical work oscillations with the number of cycles as verified by energy measurements of the battery. We moreover apply shortcut-to-adiabaticity techniques to suppress quantum friction and improve work production. While the average energy cost of the shortcut protocol is only about 3%, the work output is enhanced by up to approximately 33%, making the machine significantly more energy efficient. We additionally show that the quantum engine consistently outperforms its classical counterpart in this regime. Our results pave the way for energy efficient machines with quantum-enhanced performance.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"5 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining energy efficiency and quantum advantage in cyclic machines\",\"authors\":\"Waner Hou, Wanchao Yao, Xingyu Zhao, Kamran Rehan, Yi Li, Yue Li, Eric Lutz, Yiheng Lin, Jiangfeng Du\",\"doi\":\"10.1038/s41467-025-60179-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Energy efficiency and quantum advantage are two important features of quantum devices. We here report an experimental realization that combines both features in a quantum engine coupled to a quantum battery that stores the produced work, using a single ion in a linear Paul trap. We begin by establishing the quantum nature of the device by observing nonclassical work oscillations with the number of cycles as verified by energy measurements of the battery. We moreover apply shortcut-to-adiabaticity techniques to suppress quantum friction and improve work production. While the average energy cost of the shortcut protocol is only about 3%, the work output is enhanced by up to approximately 33%, making the machine significantly more energy efficient. We additionally show that the quantum engine consistently outperforms its classical counterpart in this regime. Our results pave the way for energy efficient machines with quantum-enhanced performance.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60179-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60179-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Combining energy efficiency and quantum advantage in cyclic machines
Energy efficiency and quantum advantage are two important features of quantum devices. We here report an experimental realization that combines both features in a quantum engine coupled to a quantum battery that stores the produced work, using a single ion in a linear Paul trap. We begin by establishing the quantum nature of the device by observing nonclassical work oscillations with the number of cycles as verified by energy measurements of the battery. We moreover apply shortcut-to-adiabaticity techniques to suppress quantum friction and improve work production. While the average energy cost of the shortcut protocol is only about 3%, the work output is enhanced by up to approximately 33%, making the machine significantly more energy efficient. We additionally show that the quantum engine consistently outperforms its classical counterpart in this regime. Our results pave the way for energy efficient machines with quantum-enhanced performance.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.