Paulina Szymczak, Wojciech Zarzecki, Jiejing Wang, Yiqian Duan, Jun Wang, Luis Pedro Coelho, Cesar de la Fuente-Nunez, Ewa Szczurek
{"title":"人工智能驱动的抗菌肽发现:挖掘和生成","authors":"Paulina Szymczak, Wojciech Zarzecki, Jiejing Wang, Yiqian Duan, Jun Wang, Luis Pedro Coelho, Cesar de la Fuente-Nunez, Ewa Szczurek","doi":"10.1021/acs.accounts.0c00594","DOIUrl":null,"url":null,"abstract":"The escalating threat of antimicrobial resistance (AMR) poses a significant global health crisis, potentially surpassing cancer as a leading cause of death by 2050. Traditional antibiotic discovery methods have not kept pace with the rapidly evolving resistance mechanisms of pathogens, highlighting the urgent need for novel therapeutic strategies. In this context, antimicrobial peptides (AMPs) represent a promising class of therapeutics due to their selectivity toward bacteria and slower induction of resistance compared to classical, small molecule antibiotics. However, designing effective AMPs remains challenging because of the vast combinatorial sequence space and the need to balance efficacy with low toxicity. Addressing this issue is of paramount importance for chemists and researchers dedicated to developing next-generation antimicrobial agents.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"169 1","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-Driven Antimicrobial Peptide Discovery: Mining and Generation\",\"authors\":\"Paulina Szymczak, Wojciech Zarzecki, Jiejing Wang, Yiqian Duan, Jun Wang, Luis Pedro Coelho, Cesar de la Fuente-Nunez, Ewa Szczurek\",\"doi\":\"10.1021/acs.accounts.0c00594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The escalating threat of antimicrobial resistance (AMR) poses a significant global health crisis, potentially surpassing cancer as a leading cause of death by 2050. Traditional antibiotic discovery methods have not kept pace with the rapidly evolving resistance mechanisms of pathogens, highlighting the urgent need for novel therapeutic strategies. In this context, antimicrobial peptides (AMPs) represent a promising class of therapeutics due to their selectivity toward bacteria and slower induction of resistance compared to classical, small molecule antibiotics. However, designing effective AMPs remains challenging because of the vast combinatorial sequence space and the need to balance efficacy with low toxicity. Addressing this issue is of paramount importance for chemists and researchers dedicated to developing next-generation antimicrobial agents.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"169 1\",\"pages\":\"\"},\"PeriodicalIF\":17.7000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.accounts.0c00594\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.0c00594","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation
The escalating threat of antimicrobial resistance (AMR) poses a significant global health crisis, potentially surpassing cancer as a leading cause of death by 2050. Traditional antibiotic discovery methods have not kept pace with the rapidly evolving resistance mechanisms of pathogens, highlighting the urgent need for novel therapeutic strategies. In this context, antimicrobial peptides (AMPs) represent a promising class of therapeutics due to their selectivity toward bacteria and slower induction of resistance compared to classical, small molecule antibiotics. However, designing effective AMPs remains challenging because of the vast combinatorial sequence space and the need to balance efficacy with low toxicity. Addressing this issue is of paramount importance for chemists and researchers dedicated to developing next-generation antimicrobial agents.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.