三官能团co2sno4 - S-scheme异质结光热促进高效太阳能驱动析氢

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Kai Li, Zhaochao Yan, Shuhan Sun, Qianmin Fan, Huayue Zhu, Chenglin Wu, Yanxian Jin, Sónia A. C. Carabineiro, Ruiqiang Yan, Bingjing He and Xianqiang Xiong
{"title":"三官能团co2sno4 - S-scheme异质结光热促进高效太阳能驱动析氢","authors":"Kai Li, Zhaochao Yan, Shuhan Sun, Qianmin Fan, Huayue Zhu, Chenglin Wu, Yanxian Jin, Sónia A. C. Carabineiro, Ruiqiang Yan, Bingjing He and Xianqiang Xiong","doi":"10.1039/D5TA03030G","DOIUrl":null,"url":null,"abstract":"<p >Photocatalytic hydrogen production offers a sustainable route for solar energy conversion, yet its efficiency is hindered by rapid charge recombination, limited light absorption and slow reaction kinetics. In this study, we introduce a strategically engineered Co<small><sub>2</sub></small>SnO<small><sub>4</sub></small>@ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> S-scheme heterojunction photocatalyst that synergistically enhances charge separation, photothermal conversion and catalytic activity to overcome these challenges. Using a simple solvent self-assembly method, we develop a heterostructure in which Co<small><sub>2</sub></small>SnO<small><sub>4</sub></small> nanoparticles serve as a versatile component by: (1) extending light absorption into the near-infrared (800–1400 nm) range for efficient solar-to-thermal conversion, (2) creating an S-scheme charge transfer pathway that enhances electron–hole separation while retaining high redox potentials, and (3) providing numerous active sites to accelerate proton reduction kinetics. The optimized photocatalyst achieves an impressive hydrogen evolution rate of 12.56 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> and an apparent quantum efficiency of 12.96% at 420 nm. Comprehensive experimental and theoretical analyses validate the S-scheme charge transfer mechanism and quantify the photothermal and catalytic contributions to reaction enhancement. This work not only demonstrates a highly efficient photocatalytic system but also provides critical insights into designing multifunctional heterostructures for solar fuel generation, paving the way for practical renewable energy applications.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 27","pages":" 21513-21525"},"PeriodicalIF":9.5000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A triple-functional Co2SnO4-enabled S-scheme heterojunction with photothermal promotion for efficient solar-driven hydrogen evolution†\",\"authors\":\"Kai Li, Zhaochao Yan, Shuhan Sun, Qianmin Fan, Huayue Zhu, Chenglin Wu, Yanxian Jin, Sónia A. C. Carabineiro, Ruiqiang Yan, Bingjing He and Xianqiang Xiong\",\"doi\":\"10.1039/D5TA03030G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photocatalytic hydrogen production offers a sustainable route for solar energy conversion, yet its efficiency is hindered by rapid charge recombination, limited light absorption and slow reaction kinetics. In this study, we introduce a strategically engineered Co<small><sub>2</sub></small>SnO<small><sub>4</sub></small>@ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> S-scheme heterojunction photocatalyst that synergistically enhances charge separation, photothermal conversion and catalytic activity to overcome these challenges. Using a simple solvent self-assembly method, we develop a heterostructure in which Co<small><sub>2</sub></small>SnO<small><sub>4</sub></small> nanoparticles serve as a versatile component by: (1) extending light absorption into the near-infrared (800–1400 nm) range for efficient solar-to-thermal conversion, (2) creating an S-scheme charge transfer pathway that enhances electron–hole separation while retaining high redox potentials, and (3) providing numerous active sites to accelerate proton reduction kinetics. The optimized photocatalyst achieves an impressive hydrogen evolution rate of 12.56 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> and an apparent quantum efficiency of 12.96% at 420 nm. Comprehensive experimental and theoretical analyses validate the S-scheme charge transfer mechanism and quantify the photothermal and catalytic contributions to reaction enhancement. This work not only demonstrates a highly efficient photocatalytic system but also provides critical insights into designing multifunctional heterostructures for solar fuel generation, paving the way for practical renewable energy applications.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 27\",\"pages\":\" 21513-21525\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03030g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03030g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化制氢为太阳能转化提供了一条可持续的途径,但其效率受到快速电荷重组、光吸收有限和反应动力学缓慢的阻碍。在这项研究中,我们引入了一种战略设计的Co2SnO4@ZnIn2S4 S-scheme异质结光催化剂,它可以协同增强电荷分离、光热转化和催化活性,以克服这些挑战。利用一种简单的溶剂自组装方法,我们开发了一种异质结构,其中Co2SnO4纳米颗粒通过以下方式作为多功能组件:(1)将光吸收扩展到近红外(800-1400 nm)范围,以实现高效的太阳-热转换;(2)创建S-scheme电荷转移途径,增强电子-空穴分离,同时保持高氧化还原电位;(3)提供大量活性位点以加速质子还原动力学。优化后的光催化剂在420 nm处的析氢速率为12.56 mmol g-1 h-1,表观量子效率为12.96%。综合实验和理论分析验证了S-scheme电荷转移机理,量化了光热和催化对反应增强的贡献。这项工作不仅展示了一个高效的光催化系统,而且为设计用于太阳能燃料发电的多功能异质结构提供了重要的见解,为实际的可再生能源应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A triple-functional Co2SnO4-enabled S-scheme heterojunction with photothermal promotion for efficient solar-driven hydrogen evolution†

A triple-functional Co2SnO4-enabled S-scheme heterojunction with photothermal promotion for efficient solar-driven hydrogen evolution†

Photocatalytic hydrogen production offers a sustainable route for solar energy conversion, yet its efficiency is hindered by rapid charge recombination, limited light absorption and slow reaction kinetics. In this study, we introduce a strategically engineered Co2SnO4@ZnIn2S4 S-scheme heterojunction photocatalyst that synergistically enhances charge separation, photothermal conversion and catalytic activity to overcome these challenges. Using a simple solvent self-assembly method, we develop a heterostructure in which Co2SnO4 nanoparticles serve as a versatile component by: (1) extending light absorption into the near-infrared (800–1400 nm) range for efficient solar-to-thermal conversion, (2) creating an S-scheme charge transfer pathway that enhances electron–hole separation while retaining high redox potentials, and (3) providing numerous active sites to accelerate proton reduction kinetics. The optimized photocatalyst achieves an impressive hydrogen evolution rate of 12.56 mmol g−1 h−1 and an apparent quantum efficiency of 12.96% at 420 nm. Comprehensive experimental and theoretical analyses validate the S-scheme charge transfer mechanism and quantify the photothermal and catalytic contributions to reaction enhancement. This work not only demonstrates a highly efficient photocatalytic system but also provides critical insights into designing multifunctional heterostructures for solar fuel generation, paving the way for practical renewable energy applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信