{"title":"活细胞化学过程实时精密光学控制的进展及未来趋势。","authors":"Chi Zhang, Bin Dong, Shivam Mahapatra, Seohee Ma","doi":"10.1038/s44303-025-00083-1","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional chemical interventions regulate cellular processes but often affect non-target biomolecules. Precise and site-specific control is crucial for studying complex systems. Conventional laser-based methods offer high spatial precision and speed but rely on prior sample knowledge and do not apply to highly mobile targets. Real-time precision opto-control (RPOC) overcomes these limits using closed-loop feedback for automated and signal-determined real-time laser activation to regulate chemical processes in live biological samples. This review compares RPOC with other optical control techniques and explores its advancements, applications, and future directions.</p>","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":"3 ","pages":"23"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119352/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances and future trends in real-time precision optical control of chemical processes in live cells.\",\"authors\":\"Chi Zhang, Bin Dong, Shivam Mahapatra, Seohee Ma\",\"doi\":\"10.1038/s44303-025-00083-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional chemical interventions regulate cellular processes but often affect non-target biomolecules. Precise and site-specific control is crucial for studying complex systems. Conventional laser-based methods offer high spatial precision and speed but rely on prior sample knowledge and do not apply to highly mobile targets. Real-time precision opto-control (RPOC) overcomes these limits using closed-loop feedback for automated and signal-determined real-time laser activation to regulate chemical processes in live biological samples. This review compares RPOC with other optical control techniques and explores its advancements, applications, and future directions.</p>\",\"PeriodicalId\":501709,\"journal\":{\"name\":\"npj Imaging\",\"volume\":\"3 \",\"pages\":\"23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44303-025-00083-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44303-025-00083-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Advances and future trends in real-time precision optical control of chemical processes in live cells.
Traditional chemical interventions regulate cellular processes but often affect non-target biomolecules. Precise and site-specific control is crucial for studying complex systems. Conventional laser-based methods offer high spatial precision and speed but rely on prior sample knowledge and do not apply to highly mobile targets. Real-time precision opto-control (RPOC) overcomes these limits using closed-loop feedback for automated and signal-determined real-time laser activation to regulate chemical processes in live biological samples. This review compares RPOC with other optical control techniques and explores its advancements, applications, and future directions.