{"title":"CASY-1/calsyntenin的钙粘蛋白结构域和运动蛋白结合的细胞内结构域在学习中以冗余的方式起作用。","authors":"Hayao Ohno, Yuzuha Komachiya, Yuichi Iino","doi":"10.17912/micropub.biology.001600","DOIUrl":null,"url":null,"abstract":"<p><p>Taste avoidance learning in <i>Caenorhabditis elegans</i> is regulated by the calsyntenin/alcadein homolog CASY-1 , which transports the insulin receptor DAF-2c to the synaptic region. This transport involves binding of the CASY-1 intracellular domain to the kinesin-1 (KIF5) complex. However, a previous study showed that the intracellular domain of CASY-1 is dispensable for learning. To investigate how CASY-1 functions, we performed functional domain mapping of CASY-1 . Both the cadherin domains of CASY-1 and its binding to kinesin-1 are individually dispensable, while simultaneous loss of both abolished the CASY-1 function, suggesting that CASY-1 enables robust intracellular transport through physical interactions with multiple proteins.</p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2025 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125631/pdf/","citationCount":"0","resultStr":"{\"title\":\"The cadherin domains and the kinesin-binding intracellular domain of CASY-1/calsyntenin function in a redundant manner for learning.\",\"authors\":\"Hayao Ohno, Yuzuha Komachiya, Yuichi Iino\",\"doi\":\"10.17912/micropub.biology.001600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Taste avoidance learning in <i>Caenorhabditis elegans</i> is regulated by the calsyntenin/alcadein homolog CASY-1 , which transports the insulin receptor DAF-2c to the synaptic region. This transport involves binding of the CASY-1 intracellular domain to the kinesin-1 (KIF5) complex. However, a previous study showed that the intracellular domain of CASY-1 is dispensable for learning. To investigate how CASY-1 functions, we performed functional domain mapping of CASY-1 . Both the cadherin domains of CASY-1 and its binding to kinesin-1 are individually dispensable, while simultaneous loss of both abolished the CASY-1 function, suggesting that CASY-1 enables robust intracellular transport through physical interactions with multiple proteins.</p>\",\"PeriodicalId\":74192,\"journal\":{\"name\":\"microPublication biology\",\"volume\":\"2025 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125631/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"microPublication biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17912/micropub.biology.001600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
The cadherin domains and the kinesin-binding intracellular domain of CASY-1/calsyntenin function in a redundant manner for learning.
Taste avoidance learning in Caenorhabditis elegans is regulated by the calsyntenin/alcadein homolog CASY-1 , which transports the insulin receptor DAF-2c to the synaptic region. This transport involves binding of the CASY-1 intracellular domain to the kinesin-1 (KIF5) complex. However, a previous study showed that the intracellular domain of CASY-1 is dispensable for learning. To investigate how CASY-1 functions, we performed functional domain mapping of CASY-1 . Both the cadherin domains of CASY-1 and its binding to kinesin-1 are individually dispensable, while simultaneous loss of both abolished the CASY-1 function, suggesting that CASY-1 enables robust intracellular transport through physical interactions with multiple proteins.