Johanna Haszczyn, Vincent O'Connor, Lindy Holden-Dye, A Christopher Green, James Kearn
{"title":"有机磷暴露时秀丽隐杆线虫行为调查的不同测定方法的比较分析。","authors":"Johanna Haszczyn, Vincent O'Connor, Lindy Holden-Dye, A Christopher Green, James Kearn","doi":"10.17912/micropub.biology.001533","DOIUrl":null,"url":null,"abstract":"<p><p><i>C. elegans</i> motility is a convenient paradigm to describe the behavioral outcome of genetic- and drug-induced changes in neural circuits. Motility may be parameterized by scoring movement on solid medium or in liquid. In addition, body wall muscle contraction inhibits pharyngeal pumping, providing an indirect measure of motility. Here, the ability of these different experimental approaches to resolve organophosphate-related effects over time was investigated. In addition, two genetic mutations that alter neuromuscular function at the L-type body wall muscle were also investigated using these assays. This work highlights the benefits and limitations of distinct screening approaches for <i>C. elegans</i> behavior when analysing organophosphate mode of action on neuromuscular signalling. In particular, this work showed that pharyngeal pumping was able to resolve acute and chronic organophosphate-related effects, however liquid-based assays were best suited to resolve the phenotype of the genetic mutant L-AChR ( <i>ufis6).</i></p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2025 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125632/pdf/","citationCount":"0","resultStr":"{\"title\":\"A comparative analysis of distinct assays for the investigation of <i>Caenorhabditis elegans</i> behavior during organophosphate exposure.\",\"authors\":\"Johanna Haszczyn, Vincent O'Connor, Lindy Holden-Dye, A Christopher Green, James Kearn\",\"doi\":\"10.17912/micropub.biology.001533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>C. elegans</i> motility is a convenient paradigm to describe the behavioral outcome of genetic- and drug-induced changes in neural circuits. Motility may be parameterized by scoring movement on solid medium or in liquid. In addition, body wall muscle contraction inhibits pharyngeal pumping, providing an indirect measure of motility. Here, the ability of these different experimental approaches to resolve organophosphate-related effects over time was investigated. In addition, two genetic mutations that alter neuromuscular function at the L-type body wall muscle were also investigated using these assays. This work highlights the benefits and limitations of distinct screening approaches for <i>C. elegans</i> behavior when analysing organophosphate mode of action on neuromuscular signalling. In particular, this work showed that pharyngeal pumping was able to resolve acute and chronic organophosphate-related effects, however liquid-based assays were best suited to resolve the phenotype of the genetic mutant L-AChR ( <i>ufis6).</i></p>\",\"PeriodicalId\":74192,\"journal\":{\"name\":\"microPublication biology\",\"volume\":\"2025 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125632/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"microPublication biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17912/micropub.biology.001533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
A comparative analysis of distinct assays for the investigation of Caenorhabditis elegans behavior during organophosphate exposure.
C. elegans motility is a convenient paradigm to describe the behavioral outcome of genetic- and drug-induced changes in neural circuits. Motility may be parameterized by scoring movement on solid medium or in liquid. In addition, body wall muscle contraction inhibits pharyngeal pumping, providing an indirect measure of motility. Here, the ability of these different experimental approaches to resolve organophosphate-related effects over time was investigated. In addition, two genetic mutations that alter neuromuscular function at the L-type body wall muscle were also investigated using these assays. This work highlights the benefits and limitations of distinct screening approaches for C. elegans behavior when analysing organophosphate mode of action on neuromuscular signalling. In particular, this work showed that pharyngeal pumping was able to resolve acute and chronic organophosphate-related effects, however liquid-based assays were best suited to resolve the phenotype of the genetic mutant L-AChR ( ufis6).