{"title":"二吡咯烷/二吡咯烷:卟啉类化合物的新前体。","authors":"Vratta Grover, Mangalampalli Ravikanth","doi":"10.1007/s41061-025-00506-y","DOIUrl":null,"url":null,"abstract":"<div><p>Dipyrroethanes/dipyrroethenes (DPEs) containing two pyrroles connected by two <i>meso</i> sp<sup>3</sup>/sp<sup>2</sup> carbons are very useful precursors for the synthesis of very novel porphyrinoids. Dipyrromethanes/dipyrromethenes (DPMs) that consist of two pyrrole rings connected via one <i>meso</i> sp<sup>3</sup>/sp<sup>2</sup> carbon are the most popular precursors for the synthesis of several types of porphyrinoids. Dipyrromethanes/dipyrromethenes can be readily prepared by condensing aldehyde and pyrrole under acid-catalyzed conditions, whereas dipyrroethenes (DPEs) require a few skilled synthetic steps to be obtained in good quantities. Especially, dipyrroethenes exist in <i>E/Z</i>-isomeric mixtures but their separation is not required for the synthesis of porphyrinoids. In the last decade, DPEs have been used as key precursors to synthesize contracted porphyrins such as triphyrins(2.1.1), porphyrin isomers such as porphycene(2.0.2.0), and several expanded porphyrins. This review describes different methods available for the synthesis of 5,6-di(alkyl/aryl/heteroaryl) dipyrroethanes/dipyrroethenes and their use in the synthesis of different porphyrinoids ranging from contracted porphyrinoids to expanded porphyrinoids. The structure, reactivity, and physico-chemical properties of various porphyrinoids which were synthesized from DPEs are also discussed.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 2","pages":""},"PeriodicalIF":8.8000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dipyrroethanes/Dipyrroethenes: New Precursors for Porphyrinoids\",\"authors\":\"Vratta Grover, Mangalampalli Ravikanth\",\"doi\":\"10.1007/s41061-025-00506-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dipyrroethanes/dipyrroethenes (DPEs) containing two pyrroles connected by two <i>meso</i> sp<sup>3</sup>/sp<sup>2</sup> carbons are very useful precursors for the synthesis of very novel porphyrinoids. Dipyrromethanes/dipyrromethenes (DPMs) that consist of two pyrrole rings connected via one <i>meso</i> sp<sup>3</sup>/sp<sup>2</sup> carbon are the most popular precursors for the synthesis of several types of porphyrinoids. Dipyrromethanes/dipyrromethenes can be readily prepared by condensing aldehyde and pyrrole under acid-catalyzed conditions, whereas dipyrroethenes (DPEs) require a few skilled synthetic steps to be obtained in good quantities. Especially, dipyrroethenes exist in <i>E/Z</i>-isomeric mixtures but their separation is not required for the synthesis of porphyrinoids. In the last decade, DPEs have been used as key precursors to synthesize contracted porphyrins such as triphyrins(2.1.1), porphyrin isomers such as porphycene(2.0.2.0), and several expanded porphyrins. This review describes different methods available for the synthesis of 5,6-di(alkyl/aryl/heteroaryl) dipyrroethanes/dipyrroethenes and their use in the synthesis of different porphyrinoids ranging from contracted porphyrinoids to expanded porphyrinoids. The structure, reactivity, and physico-chemical properties of various porphyrinoids which were synthesized from DPEs are also discussed.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":802,\"journal\":{\"name\":\"Topics in Current Chemistry\",\"volume\":\"383 2\",\"pages\":\"\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Current Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41061-025-00506-y\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-025-00506-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
Dipyrroethanes/Dipyrroethenes: New Precursors for Porphyrinoids
Dipyrroethanes/dipyrroethenes (DPEs) containing two pyrroles connected by two meso sp3/sp2 carbons are very useful precursors for the synthesis of very novel porphyrinoids. Dipyrromethanes/dipyrromethenes (DPMs) that consist of two pyrrole rings connected via one meso sp3/sp2 carbon are the most popular precursors for the synthesis of several types of porphyrinoids. Dipyrromethanes/dipyrromethenes can be readily prepared by condensing aldehyde and pyrrole under acid-catalyzed conditions, whereas dipyrroethenes (DPEs) require a few skilled synthetic steps to be obtained in good quantities. Especially, dipyrroethenes exist in E/Z-isomeric mixtures but their separation is not required for the synthesis of porphyrinoids. In the last decade, DPEs have been used as key precursors to synthesize contracted porphyrins such as triphyrins(2.1.1), porphyrin isomers such as porphycene(2.0.2.0), and several expanded porphyrins. This review describes different methods available for the synthesis of 5,6-di(alkyl/aryl/heteroaryl) dipyrroethanes/dipyrroethenes and their use in the synthesis of different porphyrinoids ranging from contracted porphyrinoids to expanded porphyrinoids. The structure, reactivity, and physico-chemical properties of various porphyrinoids which were synthesized from DPEs are also discussed.
期刊介绍:
Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science.
Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community.
In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.