罕见变异跨性别和x染色体影响的转录组学特征。

IF 3.3 Q2 GENETICS & HEREDITY
Rachel A Ungar, Taibo Li, Nikolai G Vetr, Nicole Ersaro, Alexis Battle, Stephen B Montgomery
{"title":"罕见变异跨性别和x染色体影响的转录组学特征。","authors":"Rachel A Ungar, Taibo Li, Nikolai G Vetr, Nicole Ersaro, Alexis Battle, Stephen B Montgomery","doi":"10.1016/j.xhgg.2025.100463","DOIUrl":null,"url":null,"abstract":"<p><p>The human X chromosome contains hundreds of genes and has well-established impacts on sex differences and traits. However, the X chromosome is often excluded from many genetic analyses, limiting broader understanding of variant effects. In particular, the functional impact of rare variants on the X chromosome is understudied. To investigate functional rare variants on the X chromosome, we use observations of outlier gene expression from Genotype Tissue Expression consortium data. We show that outlier genes are enriched for having nearby rare variants on the X chromosome, and this enrichment is stronger for males. Using the RIVER model, we identified 733 rare variants in 450 genes predicted to have functional differences between males and females. We examined the pharmacogenetic implications of these variants and observed that 25% of drugs with a known sex difference in adverse drug reactions were connected to genes that contained a sex-biased rare variant. We further identify that sex-biased rare variants preferentially impact transcription factors with predicted sex-differential binding, such as the XIST-modulated SIX1. Overall, we observed more within-sex variation than between-sex variation. Combined, our study investigates functional rare variants on the X chromosome, and further details how sex stratification of variant effect prediction improves identification of rare variants with predicted sex-biased effects, transcription factor biology, and pharmacogenomic impacts.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100463"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic signatures of rare variant impacts across sex and the X chromosome.\",\"authors\":\"Rachel A Ungar, Taibo Li, Nikolai G Vetr, Nicole Ersaro, Alexis Battle, Stephen B Montgomery\",\"doi\":\"10.1016/j.xhgg.2025.100463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human X chromosome contains hundreds of genes and has well-established impacts on sex differences and traits. However, the X chromosome is often excluded from many genetic analyses, limiting broader understanding of variant effects. In particular, the functional impact of rare variants on the X chromosome is understudied. To investigate functional rare variants on the X chromosome, we use observations of outlier gene expression from Genotype Tissue Expression consortium data. We show that outlier genes are enriched for having nearby rare variants on the X chromosome, and this enrichment is stronger for males. Using the RIVER model, we identified 733 rare variants in 450 genes predicted to have functional differences between males and females. We examined the pharmacogenetic implications of these variants and observed that 25% of drugs with a known sex difference in adverse drug reactions were connected to genes that contained a sex-biased rare variant. We further identify that sex-biased rare variants preferentially impact transcription factors with predicted sex-differential binding, such as the XIST-modulated SIX1. Overall, we observed more within-sex variation than between-sex variation. Combined, our study investigates functional rare variants on the X chromosome, and further details how sex stratification of variant effect prediction improves identification of rare variants with predicted sex-biased effects, transcription factor biology, and pharmacogenomic impacts.</p>\",\"PeriodicalId\":34530,\"journal\":{\"name\":\"HGG Advances\",\"volume\":\" \",\"pages\":\"100463\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HGG Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xhgg.2025.100463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

人类的x染色体包含数百个基因,对性别差异和性别特征有着明确的影响。然而,x染色体经常被排除在许多遗传分析之外,限制了对变异效应的更广泛理解。特别是,罕见变异对x染色体的功能影响尚未得到充分研究。为了研究x染色体上的功能性罕见变异,我们使用了GTEx联盟数据中异常基因表达的观察结果。我们发现,异常基因在x染色体上具有附近的罕见变异而被富集,并且这种富集在男性中更为强烈。使用RIVER模型,我们确定了450个基因中的733个罕见变异,预计在男性和女性之间具有功能差异。我们检查了这些变异的药理学意义,并观察到25%的已知药物不良反应性别差异的药物与含有性别偏倚罕见变异的基因有关。我们进一步发现,性别偏倚的罕见变异优先影响具有预测性别差异结合的转录因子,如xist调节的SIX1。总的来说,我们观察到的性别内变异多于性别间变异。总之,我们的研究调查了x染色体上的功能性罕见变异,并进一步详细说明了变异效应预测的性别分层如何提高具有预测性别偏倚效应、转录因子生物学和药物基因组学影响的罕见变异的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcriptomic signatures of rare variant impacts across sex and the X chromosome.

The human X chromosome contains hundreds of genes and has well-established impacts on sex differences and traits. However, the X chromosome is often excluded from many genetic analyses, limiting broader understanding of variant effects. In particular, the functional impact of rare variants on the X chromosome is understudied. To investigate functional rare variants on the X chromosome, we use observations of outlier gene expression from Genotype Tissue Expression consortium data. We show that outlier genes are enriched for having nearby rare variants on the X chromosome, and this enrichment is stronger for males. Using the RIVER model, we identified 733 rare variants in 450 genes predicted to have functional differences between males and females. We examined the pharmacogenetic implications of these variants and observed that 25% of drugs with a known sex difference in adverse drug reactions were connected to genes that contained a sex-biased rare variant. We further identify that sex-biased rare variants preferentially impact transcription factors with predicted sex-differential binding, such as the XIST-modulated SIX1. Overall, we observed more within-sex variation than between-sex variation. Combined, our study investigates functional rare variants on the X chromosome, and further details how sex stratification of variant effect prediction improves identification of rare variants with predicted sex-biased effects, transcription factor biology, and pharmacogenomic impacts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信