Rachel A Ungar, Taibo Li, Nikolai G Vetr, Nicole Ersaro, Alexis Battle, Stephen B Montgomery
{"title":"罕见变异跨性别和x染色体影响的转录组学特征。","authors":"Rachel A Ungar, Taibo Li, Nikolai G Vetr, Nicole Ersaro, Alexis Battle, Stephen B Montgomery","doi":"10.1016/j.xhgg.2025.100463","DOIUrl":null,"url":null,"abstract":"<p><p>The human X chromosome contains hundreds of genes and has well-established impacts on sex differences and traits. However, the X chromosome is often excluded from many genetic analyses, limiting broader understanding of variant effects. In particular, the functional impact of rare variants on the X chromosome is understudied. To investigate functional rare variants on the X chromosome, we use observations of outlier gene expression from Genotype Tissue Expression consortium data. We show that outlier genes are enriched for having nearby rare variants on the X chromosome, and this enrichment is stronger for males. Using the RIVER model, we identified 733 rare variants in 450 genes predicted to have functional differences between males and females. We examined the pharmacogenetic implications of these variants and observed that 25% of drugs with a known sex difference in adverse drug reactions were connected to genes that contained a sex-biased rare variant. We further identify that sex-biased rare variants preferentially impact transcription factors with predicted sex-differential binding, such as the XIST-modulated SIX1. Overall, we observed more within-sex variation than between-sex variation. Combined, our study investigates functional rare variants on the X chromosome, and further details how sex stratification of variant effect prediction improves identification of rare variants with predicted sex-biased effects, transcription factor biology, and pharmacogenomic impacts.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100463"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic signatures of rare variant impacts across sex and the X chromosome.\",\"authors\":\"Rachel A Ungar, Taibo Li, Nikolai G Vetr, Nicole Ersaro, Alexis Battle, Stephen B Montgomery\",\"doi\":\"10.1016/j.xhgg.2025.100463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human X chromosome contains hundreds of genes and has well-established impacts on sex differences and traits. However, the X chromosome is often excluded from many genetic analyses, limiting broader understanding of variant effects. In particular, the functional impact of rare variants on the X chromosome is understudied. To investigate functional rare variants on the X chromosome, we use observations of outlier gene expression from Genotype Tissue Expression consortium data. We show that outlier genes are enriched for having nearby rare variants on the X chromosome, and this enrichment is stronger for males. Using the RIVER model, we identified 733 rare variants in 450 genes predicted to have functional differences between males and females. We examined the pharmacogenetic implications of these variants and observed that 25% of drugs with a known sex difference in adverse drug reactions were connected to genes that contained a sex-biased rare variant. We further identify that sex-biased rare variants preferentially impact transcription factors with predicted sex-differential binding, such as the XIST-modulated SIX1. Overall, we observed more within-sex variation than between-sex variation. Combined, our study investigates functional rare variants on the X chromosome, and further details how sex stratification of variant effect prediction improves identification of rare variants with predicted sex-biased effects, transcription factor biology, and pharmacogenomic impacts.</p>\",\"PeriodicalId\":34530,\"journal\":{\"name\":\"HGG Advances\",\"volume\":\" \",\"pages\":\"100463\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HGG Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xhgg.2025.100463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Transcriptomic signatures of rare variant impacts across sex and the X chromosome.
The human X chromosome contains hundreds of genes and has well-established impacts on sex differences and traits. However, the X chromosome is often excluded from many genetic analyses, limiting broader understanding of variant effects. In particular, the functional impact of rare variants on the X chromosome is understudied. To investigate functional rare variants on the X chromosome, we use observations of outlier gene expression from Genotype Tissue Expression consortium data. We show that outlier genes are enriched for having nearby rare variants on the X chromosome, and this enrichment is stronger for males. Using the RIVER model, we identified 733 rare variants in 450 genes predicted to have functional differences between males and females. We examined the pharmacogenetic implications of these variants and observed that 25% of drugs with a known sex difference in adverse drug reactions were connected to genes that contained a sex-biased rare variant. We further identify that sex-biased rare variants preferentially impact transcription factors with predicted sex-differential binding, such as the XIST-modulated SIX1. Overall, we observed more within-sex variation than between-sex variation. Combined, our study investigates functional rare variants on the X chromosome, and further details how sex stratification of variant effect prediction improves identification of rare variants with predicted sex-biased effects, transcription factor biology, and pharmacogenomic impacts.