Paulina Kościelniak, Paulina Glazińska, Agnieszka Bagniewska-Zadworna, Joanna Mucha, Marcin Zadworny
{"title":"基于比较RNA测序的柏属植物转录组分析:参与主根和侧根出现的特定基因集。","authors":"Paulina Kościelniak, Paulina Glazińska, Agnieszka Bagniewska-Zadworna, Joanna Mucha, Marcin Zadworny","doi":"10.1093/treephys/tpaf067","DOIUrl":null,"url":null,"abstract":"<p><p>Root development is well recognized in model plants, with many studies focusing only on primary root growth or lateral root initiation. However, taproot vs lateral root development has rarely been explored using molecular tools, and even less is understood about how the molecular processes engaged in taproot elongation shape the emergence of lateral roots in trees in the time-dependent manner. We address how gene expression is associated with elongation of taproot and lateral root formation of Quercus robur L. In addition, we have analyzed how the exogenous application of hormones and inhibitors shapes the root architecture. We also revealed that lateral root formation and emergence corresponds to expression of genes at specific taproot length points. Therefore, our study suggests that the pattern of gene expression in the taproot tips is involved in the shaping of lateral root growth. In addition, we have shown that lateral roots are characterized by a set of genes that are distinct from those expressed in the taproot tips. Insights from this study contribute to better understanding root development in trees.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12207064/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative RNA sequencing-based transcriptome profiling of Quercur robur: specific sets of genes involved in taproot and lateral roots emergence.\",\"authors\":\"Paulina Kościelniak, Paulina Glazińska, Agnieszka Bagniewska-Zadworna, Joanna Mucha, Marcin Zadworny\",\"doi\":\"10.1093/treephys/tpaf067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Root development is well recognized in model plants, with many studies focusing only on primary root growth or lateral root initiation. However, taproot vs lateral root development has rarely been explored using molecular tools, and even less is understood about how the molecular processes engaged in taproot elongation shape the emergence of lateral roots in trees in the time-dependent manner. We address how gene expression is associated with elongation of taproot and lateral root formation of Quercus robur L. In addition, we have analyzed how the exogenous application of hormones and inhibitors shapes the root architecture. We also revealed that lateral root formation and emergence corresponds to expression of genes at specific taproot length points. Therefore, our study suggests that the pattern of gene expression in the taproot tips is involved in the shaping of lateral root growth. In addition, we have shown that lateral roots are characterized by a set of genes that are distinct from those expressed in the taproot tips. Insights from this study contribute to better understanding root development in trees.</p>\",\"PeriodicalId\":23286,\"journal\":{\"name\":\"Tree physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12207064/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tree physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/treephys/tpaf067\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf067","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Comparative RNA sequencing-based transcriptome profiling of Quercur robur: specific sets of genes involved in taproot and lateral roots emergence.
Root development is well recognized in model plants, with many studies focusing only on primary root growth or lateral root initiation. However, taproot vs lateral root development has rarely been explored using molecular tools, and even less is understood about how the molecular processes engaged in taproot elongation shape the emergence of lateral roots in trees in the time-dependent manner. We address how gene expression is associated with elongation of taproot and lateral root formation of Quercus robur L. In addition, we have analyzed how the exogenous application of hormones and inhibitors shapes the root architecture. We also revealed that lateral root formation and emergence corresponds to expression of genes at specific taproot length points. Therefore, our study suggests that the pattern of gene expression in the taproot tips is involved in the shaping of lateral root growth. In addition, we have shown that lateral roots are characterized by a set of genes that are distinct from those expressed in the taproot tips. Insights from this study contribute to better understanding root development in trees.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.