Soha Hassan, Mohamed Saleh, Bayoumy Mohamed, Mohamed S Elhebiry, Abdelaziz Abdeldayem, Elsayed Issawy, Khaled Zahran, Samir Kamh
{"title":"基于雷达干涉测量、测高和大地测量的埃及尼罗河三角洲环境风险评估。","authors":"Soha Hassan, Mohamed Saleh, Bayoumy Mohamed, Mohamed S Elhebiry, Abdelaziz Abdeldayem, Elsayed Issawy, Khaled Zahran, Samir Kamh","doi":"10.1038/s41598-025-03831-w","DOIUrl":null,"url":null,"abstract":"<p><p>Egypt is confronted with a number of hazardous environmental incidents, mainly sea level rise (SLR) and land subsidence. The Nile Delta is a low-relief surface that is particularly vulnerable to flooding and SLR, making it important to study inundation scenarios for the region. Potential social and economic consequences of this anticipated sea encroachment were projected utilizing (1) crustal deformation calculations derived from the time series analysis using the Persistent Scatterer Interferometry (PSI) technique based on Least Squares Estimation. (a stack of 191 Sentinel-1 ascending scenes), and eight permanent stations of Global Navigation Satellite System (GNSS); both spanning the period 2014-2019, (2) SLR values using Satellite Altimetry, and (3) a high-resolution digital elevation model (TerraSAR-X/TanDEM-X). The The key findings of this study are summarized as follows; (1) large cities and urban regions adjacent to the two main active branches of the Nile Delta (Rosetta and Damietta) experienced the majority of subsidence rates, (2) the cities of Damietta, Mansoura and Port said (eastern side of the Nile Delta) experienced the maximum rates of subsidence (- 11 ± 0.6, - 8.9 ± 0.7, and - 6.3 ± 0.7 mm/year, respectively), (3) the cities of Shebin El Kom, Damanhour, Tanta, New-Damietta, Kafr El-Sheikh had moderate subsidence rates (- 3.2 ± 0.6, - 2.4 ± 0.7, - 4.2 ± 0.6, - 3.8 ± 0.7, - 3.2 ± 0.7 mm/year, respectively), (4) the Nile Delta subsidence seems to be dominated by anthropogenic reasons such as urbanization, ground water and hydrocarbon extraction, (5) the linear trend of sea level anomaly (SLA) from satellite altimetry data over the period from 1993 to 2019 along the Delta shoreline, the SLR is ~ 3.42 ± 0.5 mm/year, and (6) based on GIS tools and IDW interpolation, wide swaths of the northern Nile Delta would be flooded in the worst-case scenario, which would result in approximately 482 km<sup>2</sup> being flooded in fifty years, 2433 km<sup>2</sup> in one hundred years, and 3320 km<sup>2</sup> in one hundred and fifty years due to the ongoing land subsidence and SLR of 3.4 mm/year.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"19209"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127481/pdf/","citationCount":"0","resultStr":"{\"title\":\"Environmental risk assessment of the Nile Delta, Egypt, based on radar interferometry, altimetry, and geodetic measurements.\",\"authors\":\"Soha Hassan, Mohamed Saleh, Bayoumy Mohamed, Mohamed S Elhebiry, Abdelaziz Abdeldayem, Elsayed Issawy, Khaled Zahran, Samir Kamh\",\"doi\":\"10.1038/s41598-025-03831-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Egypt is confronted with a number of hazardous environmental incidents, mainly sea level rise (SLR) and land subsidence. The Nile Delta is a low-relief surface that is particularly vulnerable to flooding and SLR, making it important to study inundation scenarios for the region. Potential social and economic consequences of this anticipated sea encroachment were projected utilizing (1) crustal deformation calculations derived from the time series analysis using the Persistent Scatterer Interferometry (PSI) technique based on Least Squares Estimation. (a stack of 191 Sentinel-1 ascending scenes), and eight permanent stations of Global Navigation Satellite System (GNSS); both spanning the period 2014-2019, (2) SLR values using Satellite Altimetry, and (3) a high-resolution digital elevation model (TerraSAR-X/TanDEM-X). The The key findings of this study are summarized as follows; (1) large cities and urban regions adjacent to the two main active branches of the Nile Delta (Rosetta and Damietta) experienced the majority of subsidence rates, (2) the cities of Damietta, Mansoura and Port said (eastern side of the Nile Delta) experienced the maximum rates of subsidence (- 11 ± 0.6, - 8.9 ± 0.7, and - 6.3 ± 0.7 mm/year, respectively), (3) the cities of Shebin El Kom, Damanhour, Tanta, New-Damietta, Kafr El-Sheikh had moderate subsidence rates (- 3.2 ± 0.6, - 2.4 ± 0.7, - 4.2 ± 0.6, - 3.8 ± 0.7, - 3.2 ± 0.7 mm/year, respectively), (4) the Nile Delta subsidence seems to be dominated by anthropogenic reasons such as urbanization, ground water and hydrocarbon extraction, (5) the linear trend of sea level anomaly (SLA) from satellite altimetry data over the period from 1993 to 2019 along the Delta shoreline, the SLR is ~ 3.42 ± 0.5 mm/year, and (6) based on GIS tools and IDW interpolation, wide swaths of the northern Nile Delta would be flooded in the worst-case scenario, which would result in approximately 482 km<sup>2</sup> being flooded in fifty years, 2433 km<sup>2</sup> in one hundred years, and 3320 km<sup>2</sup> in one hundred and fifty years due to the ongoing land subsidence and SLR of 3.4 mm/year.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"19209\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127481/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-03831-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-03831-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Environmental risk assessment of the Nile Delta, Egypt, based on radar interferometry, altimetry, and geodetic measurements.
Egypt is confronted with a number of hazardous environmental incidents, mainly sea level rise (SLR) and land subsidence. The Nile Delta is a low-relief surface that is particularly vulnerable to flooding and SLR, making it important to study inundation scenarios for the region. Potential social and economic consequences of this anticipated sea encroachment were projected utilizing (1) crustal deformation calculations derived from the time series analysis using the Persistent Scatterer Interferometry (PSI) technique based on Least Squares Estimation. (a stack of 191 Sentinel-1 ascending scenes), and eight permanent stations of Global Navigation Satellite System (GNSS); both spanning the period 2014-2019, (2) SLR values using Satellite Altimetry, and (3) a high-resolution digital elevation model (TerraSAR-X/TanDEM-X). The The key findings of this study are summarized as follows; (1) large cities and urban regions adjacent to the two main active branches of the Nile Delta (Rosetta and Damietta) experienced the majority of subsidence rates, (2) the cities of Damietta, Mansoura and Port said (eastern side of the Nile Delta) experienced the maximum rates of subsidence (- 11 ± 0.6, - 8.9 ± 0.7, and - 6.3 ± 0.7 mm/year, respectively), (3) the cities of Shebin El Kom, Damanhour, Tanta, New-Damietta, Kafr El-Sheikh had moderate subsidence rates (- 3.2 ± 0.6, - 2.4 ± 0.7, - 4.2 ± 0.6, - 3.8 ± 0.7, - 3.2 ± 0.7 mm/year, respectively), (4) the Nile Delta subsidence seems to be dominated by anthropogenic reasons such as urbanization, ground water and hydrocarbon extraction, (5) the linear trend of sea level anomaly (SLA) from satellite altimetry data over the period from 1993 to 2019 along the Delta shoreline, the SLR is ~ 3.42 ± 0.5 mm/year, and (6) based on GIS tools and IDW interpolation, wide swaths of the northern Nile Delta would be flooded in the worst-case scenario, which would result in approximately 482 km2 being flooded in fifty years, 2433 km2 in one hundred years, and 3320 km2 in one hundred and fifty years due to the ongoing land subsidence and SLR of 3.4 mm/year.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.