熊果苷类药物与小牛胸腺DNA相互作用的生物物理和电化学研究。

IF 1.3 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
D S Bhuvaneshwari, Kandasamy Pavithra, Kuppanagounder P Elango
{"title":"熊果苷类药物与小牛胸腺DNA相互作用的生物物理和电化学研究。","authors":"D S Bhuvaneshwari, Kandasamy Pavithra, Kuppanagounder P Elango","doi":"10.1080/15257770.2025.2512857","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the interaction of therapeutic drugs with DNA is crucial for designing highly selective DNA-targeted medicines that could overcome the current therapeutic limitations. In this endeavour, the DNA binding behaviour of arbutin (<b>ATN</b>) was explored using multi-spectroscopic, electrochemical and computational studies. The UV-Vis spectral studies authenticated the complexation of <b>ATN</b> with CT-DNA and exposed <b>ATN</b> as a moderately strong DNA binder with a binding constant of 8.029 × 10<sup>3</sup> M<sup>-1</sup>. The findings of fluorescence spectral studies not only revealed the spontaneous ground state complex formation between <b>ATN</b> and CT-DNA, but also emphasised the role of hydrogen bonding and Van der Waals interactions in stabilising the <b>ATN</b>/CT-DNA complex. Since the competitive dye displacement assay strongly excluded the plausibility of classical intercalation and conventional groove binding mode of <b>ATN</b>, viscosity studies provided clues regarding the external binding mode of <b>ATN</b>. The appreciable enhancement resulted in the fluorescence emission of the <b>ATN</b>/CT-DNA complex upon increasing NaCl concentration, which certified <b>ATN</b> as an external binder. The CD spectral results exposed the <b>ATN</b>-induced moderate conformational alterations in CT-DNA. Remarkably, the voltammetric titration results labelled the glucopyranoside moiety of <b>ATN</b> as a DNA binding unit with a formation constant of 2.57 × 10<sup>4</sup> M<sup>-1</sup> rather than the hydroquinone moiety of <b>ATN</b>. Molecular docking and metadynamics simulation outcomes served as pictorial evidence of experimental results. They revealed the predominant contribution of hydrogen bonding interactions in stabilising <b>ATN</b>/DNA complexation.</p>","PeriodicalId":19343,"journal":{"name":"Nucleosides, Nucleotides & Nucleic Acids","volume":" ","pages":"1-23"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biophysical and electrochemical studies on the interaction of arbutin drug with calf-thymus DNA.\",\"authors\":\"D S Bhuvaneshwari, Kandasamy Pavithra, Kuppanagounder P Elango\",\"doi\":\"10.1080/15257770.2025.2512857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the interaction of therapeutic drugs with DNA is crucial for designing highly selective DNA-targeted medicines that could overcome the current therapeutic limitations. In this endeavour, the DNA binding behaviour of arbutin (<b>ATN</b>) was explored using multi-spectroscopic, electrochemical and computational studies. The UV-Vis spectral studies authenticated the complexation of <b>ATN</b> with CT-DNA and exposed <b>ATN</b> as a moderately strong DNA binder with a binding constant of 8.029 × 10<sup>3</sup> M<sup>-1</sup>. The findings of fluorescence spectral studies not only revealed the spontaneous ground state complex formation between <b>ATN</b> and CT-DNA, but also emphasised the role of hydrogen bonding and Van der Waals interactions in stabilising the <b>ATN</b>/CT-DNA complex. Since the competitive dye displacement assay strongly excluded the plausibility of classical intercalation and conventional groove binding mode of <b>ATN</b>, viscosity studies provided clues regarding the external binding mode of <b>ATN</b>. The appreciable enhancement resulted in the fluorescence emission of the <b>ATN</b>/CT-DNA complex upon increasing NaCl concentration, which certified <b>ATN</b> as an external binder. The CD spectral results exposed the <b>ATN</b>-induced moderate conformational alterations in CT-DNA. Remarkably, the voltammetric titration results labelled the glucopyranoside moiety of <b>ATN</b> as a DNA binding unit with a formation constant of 2.57 × 10<sup>4</sup> M<sup>-1</sup> rather than the hydroquinone moiety of <b>ATN</b>. Molecular docking and metadynamics simulation outcomes served as pictorial evidence of experimental results. They revealed the predominant contribution of hydrogen bonding interactions in stabilising <b>ATN</b>/DNA complexation.</p>\",\"PeriodicalId\":19343,\"journal\":{\"name\":\"Nucleosides, Nucleotides & Nucleic Acids\",\"volume\":\" \",\"pages\":\"1-23\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleosides, Nucleotides & Nucleic Acids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15257770.2025.2512857\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides & Nucleic Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15257770.2025.2512857","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解治疗药物与DNA的相互作用对于设计高选择性DNA靶向药物至关重要,这些药物可以克服当前的治疗局限性。在这一努力中,熊果苷(ATN)的DNA结合行为被探索使用多光谱,电化学和计算研究。紫外可见光谱研究证实了ATN与CT-DNA的络合作用,并表明ATN是中等强度的DNA结合剂,结合常数为8.029 × 103 M-1。荧光光谱研究结果不仅揭示了ATN与CT-DNA之间自发形成的基态配合物,而且强调了氢键和范德华相互作用在稳定ATN/CT-DNA配合物中的作用。由于竞争染料置换试验强烈地排除了ATN的经典插层和传统凹槽结合模式的合理性,因此粘度研究为ATN的外部结合模式提供了线索。随着NaCl浓度的增加,ATN/CT-DNA复合物的荧光发射明显增强,证明ATN是一种外结合物。CD光谱结果揭示了atn诱导的CT-DNA的适度构象改变。值得注意的是,伏安滴定结果表明,ATN的葡萄糖吡喃苷部分是DNA结合单元,形成常数为2.57 × 104 M-1,而不是对苯二酚部分。分子对接和元动力学模拟结果为实验结果提供了图像证据。他们揭示了氢键相互作用在稳定ATN/DNA络合中的主要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biophysical and electrochemical studies on the interaction of arbutin drug with calf-thymus DNA.

Understanding the interaction of therapeutic drugs with DNA is crucial for designing highly selective DNA-targeted medicines that could overcome the current therapeutic limitations. In this endeavour, the DNA binding behaviour of arbutin (ATN) was explored using multi-spectroscopic, electrochemical and computational studies. The UV-Vis spectral studies authenticated the complexation of ATN with CT-DNA and exposed ATN as a moderately strong DNA binder with a binding constant of 8.029 × 103 M-1. The findings of fluorescence spectral studies not only revealed the spontaneous ground state complex formation between ATN and CT-DNA, but also emphasised the role of hydrogen bonding and Van der Waals interactions in stabilising the ATN/CT-DNA complex. Since the competitive dye displacement assay strongly excluded the plausibility of classical intercalation and conventional groove binding mode of ATN, viscosity studies provided clues regarding the external binding mode of ATN. The appreciable enhancement resulted in the fluorescence emission of the ATN/CT-DNA complex upon increasing NaCl concentration, which certified ATN as an external binder. The CD spectral results exposed the ATN-induced moderate conformational alterations in CT-DNA. Remarkably, the voltammetric titration results labelled the glucopyranoside moiety of ATN as a DNA binding unit with a formation constant of 2.57 × 104 M-1 rather than the hydroquinone moiety of ATN. Molecular docking and metadynamics simulation outcomes served as pictorial evidence of experimental results. They revealed the predominant contribution of hydrogen bonding interactions in stabilising ATN/DNA complexation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleosides, Nucleotides & Nucleic Acids
Nucleosides, Nucleotides & Nucleic Acids 生物-生化与分子生物学
CiteScore
2.60
自引率
7.70%
发文量
91
审稿时长
6 months
期刊介绍: Nucleosides, Nucleotides & Nucleic Acids publishes research articles, short notices, and concise, critical reviews of related topics that focus on the chemistry and biology of nucleosides, nucleotides, and nucleic acids. Complete with experimental details, this all-inclusive journal emphasizes the synthesis, biological activities, new and improved synthetic methods, and significant observations related to new compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信