单原子合金天线中分子捕获的热电子探测。

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2025-04-28 eCollection Date: 2025-06-01 DOI:10.1093/nsr/nwaf174
Yang Li, Yuanming Zhang, Zhaojian Zeng, Yong Chen, Zhonghua Li, Xiaoming Xu, Zhigang Zou, Zhipei Sun, Zhaosheng Li
{"title":"单原子合金天线中分子捕获的热电子探测。","authors":"Yang Li, Yuanming Zhang, Zhaojian Zeng, Yong Chen, Zhonghua Li, Xiaoming Xu, Zhigang Zou, Zhipei Sun, Zhaosheng Li","doi":"10.1093/nsr/nwaf174","DOIUrl":null,"url":null,"abstract":"<p><p>Hot electrons are ubiquitous in diverse physical and chemical processes, since they are involved in the energy transfer of elementary processes such as adsorption, diffusion and desorption of reactants. However, hot electrons have short lifetimes (∼few fs) and small mean free paths (∼<10 nm), which are inherently difficult to detect via conventional <i>in situ</i> pumping techniques. Here, we designed a spectrally tunable photoexcitation desorption analyser, a tool for tracking hot-electron generation, which enables mechanistic studies of hot-electron generation and transfer in single-atom alloy antennas in real time under flow conditions by a variety of molecular probes (CO, CO<sub>2</sub> and various hydrocarbons). Long-lived hot electrons arise because electrons with discrete energy levels spaced by several hundred meV in individual atoms cannot relax to form phonons. Furthermore, we utilize the hot electrons generated by single-atom alloy antenna-modified photocatalysts under illumination to produce green syngas from carbon dioxide and water, achieving an efficiency one order of magnitude higher than traditional powder photocatalysis. Our discovery provides an unprecedented perspective for the detection of hot-electron generation and has implications for future advancements in nanophotonics.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 6","pages":"nwaf174"},"PeriodicalIF":16.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125980/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular-captured hot-electron detection in single-atom alloy antennas.\",\"authors\":\"Yang Li, Yuanming Zhang, Zhaojian Zeng, Yong Chen, Zhonghua Li, Xiaoming Xu, Zhigang Zou, Zhipei Sun, Zhaosheng Li\",\"doi\":\"10.1093/nsr/nwaf174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hot electrons are ubiquitous in diverse physical and chemical processes, since they are involved in the energy transfer of elementary processes such as adsorption, diffusion and desorption of reactants. However, hot electrons have short lifetimes (∼few fs) and small mean free paths (∼<10 nm), which are inherently difficult to detect via conventional <i>in situ</i> pumping techniques. Here, we designed a spectrally tunable photoexcitation desorption analyser, a tool for tracking hot-electron generation, which enables mechanistic studies of hot-electron generation and transfer in single-atom alloy antennas in real time under flow conditions by a variety of molecular probes (CO, CO<sub>2</sub> and various hydrocarbons). Long-lived hot electrons arise because electrons with discrete energy levels spaced by several hundred meV in individual atoms cannot relax to form phonons. Furthermore, we utilize the hot electrons generated by single-atom alloy antenna-modified photocatalysts under illumination to produce green syngas from carbon dioxide and water, achieving an efficiency one order of magnitude higher than traditional powder photocatalysis. Our discovery provides an unprecedented perspective for the detection of hot-electron generation and has implications for future advancements in nanophotonics.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"12 6\",\"pages\":\"nwaf174\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125980/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwaf174\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf174","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

热电子在各种物理和化学过程中无处不在,因为它们参与了反应物的吸附、扩散和解吸等基本过程的能量传递。然而,热电子具有较短的寿命(~几fs)和较小的平均自由程(~原位泵送技术)。本文设计了一种光谱可调的光激发解吸分析仪,该分析仪是一种跟踪热电子产生的工具,可以通过多种分子探针(CO, CO2和各种碳氢化合物)实时研究流动条件下单原子合金天线中热电子产生和转移的机理。长寿命的热电子之所以出现,是因为在单个原子中,具有几百兆电子伏特的离散能级的电子不能弛豫形成声子。此外,我们利用单原子合金天线修饰光催化剂在光照下产生的热电子,从二氧化碳和水中产生绿色合成气,其效率比传统的粉末光催化提高了一个数量级。我们的发现为探测热电子的产生提供了一个前所未有的视角,并对纳米光子学的未来发展具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular-captured hot-electron detection in single-atom alloy antennas.

Hot electrons are ubiquitous in diverse physical and chemical processes, since they are involved in the energy transfer of elementary processes such as adsorption, diffusion and desorption of reactants. However, hot electrons have short lifetimes (∼few fs) and small mean free paths (∼<10 nm), which are inherently difficult to detect via conventional in situ pumping techniques. Here, we designed a spectrally tunable photoexcitation desorption analyser, a tool for tracking hot-electron generation, which enables mechanistic studies of hot-electron generation and transfer in single-atom alloy antennas in real time under flow conditions by a variety of molecular probes (CO, CO2 and various hydrocarbons). Long-lived hot electrons arise because electrons with discrete energy levels spaced by several hundred meV in individual atoms cannot relax to form phonons. Furthermore, we utilize the hot electrons generated by single-atom alloy antenna-modified photocatalysts under illumination to produce green syngas from carbon dioxide and water, achieving an efficiency one order of magnitude higher than traditional powder photocatalysis. Our discovery provides an unprecedented perspective for the detection of hot-electron generation and has implications for future advancements in nanophotonics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信