沙尾鱼对淡水的适应涉及基因组和表观基因组变化的结合。

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Paulo Pereira, Sandra Afonso, António Múrias, Miguel Carneiro, Stephen J Sabatino
{"title":"沙尾鱼对淡水的适应涉及基因组和表观基因组变化的结合。","authors":"Paulo Pereira, Sandra Afonso, António Múrias, Miguel Carneiro, Stephen J Sabatino","doi":"10.1007/s00239-025-10253-9","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic modifications are one of the evolutionary mechanisms that allow individuals and populations to adapt to environmental changes. However, the relative importance of epigenetic versus genetic changes in adaptation and how they may interact remains poorly understood. Here, we investigate the role of DNA methylation in adaptation by studying a population of Allis shad (Alosa alosa) that evolved a completely freshwater life history approximately 70 years ago and the anadromous one that founded it. Using reduced representation bisulfite sequencing, we identified 227 differentially methylated regions (DMRs) between them, overlapping known important genes for freshwater adaptation, such as ATP2B4, PRLH2, and KCNF1A. Enrichment analysis of GO terms suggested that genes in the identified DMRs play key roles in neural, growth, and developmental functions, which is concordant with previous studies on adaptation to freshwater in this species and genus. Using pool-seq data from an earlier study, we then tested if the DMRs for freshwater shad found here overlapped genomic outlier regions that may be under genetic selection in three independently evolved, freshwater populations (including the one studied here). Our analysis showed that the DMRs identified here fall broadly outside genomic regions under natural selection. However, 45% of these were associated with CpG > TpG deamination events in DMRs, a mutation tightly linked with DNA methylation. Our study illustrates that both genetic and epigenetic mechanisms are important during the initial stages of adaptation in this system. It also supports the hypothesis that methylation may generate polymorphism that fuels adaptive evolution.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptation to Freshwater in Allis Shad Involved a Combination of Genomic and Epigenomic Changes.\",\"authors\":\"Paulo Pereira, Sandra Afonso, António Múrias, Miguel Carneiro, Stephen J Sabatino\",\"doi\":\"10.1007/s00239-025-10253-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epigenetic modifications are one of the evolutionary mechanisms that allow individuals and populations to adapt to environmental changes. However, the relative importance of epigenetic versus genetic changes in adaptation and how they may interact remains poorly understood. Here, we investigate the role of DNA methylation in adaptation by studying a population of Allis shad (Alosa alosa) that evolved a completely freshwater life history approximately 70 years ago and the anadromous one that founded it. Using reduced representation bisulfite sequencing, we identified 227 differentially methylated regions (DMRs) between them, overlapping known important genes for freshwater adaptation, such as ATP2B4, PRLH2, and KCNF1A. Enrichment analysis of GO terms suggested that genes in the identified DMRs play key roles in neural, growth, and developmental functions, which is concordant with previous studies on adaptation to freshwater in this species and genus. Using pool-seq data from an earlier study, we then tested if the DMRs for freshwater shad found here overlapped genomic outlier regions that may be under genetic selection in three independently evolved, freshwater populations (including the one studied here). Our analysis showed that the DMRs identified here fall broadly outside genomic regions under natural selection. However, 45% of these were associated with CpG > TpG deamination events in DMRs, a mutation tightly linked with DNA methylation. Our study illustrates that both genetic and epigenetic mechanisms are important during the initial stages of adaptation in this system. It also supports the hypothesis that methylation may generate polymorphism that fuels adaptive evolution.</p>\",\"PeriodicalId\":16366,\"journal\":{\"name\":\"Journal of Molecular Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00239-025-10253-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-025-10253-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

表观遗传修饰是允许个体和种群适应环境变化的进化机制之一。然而,表观遗传与遗传变化在适应中的相对重要性以及它们如何相互作用仍然知之甚少。在这里,我们研究了DNA甲基化在适应中的作用,通过研究一个大约70年前进化出完全淡水生活史的Allis shad (Alosa Alosa)种群和建立它的溯水生活史。通过亚硫酸盐还原测序,我们确定了它们之间227个差异甲基化区域(DMRs),重叠了淡水适应的已知重要基因,如ATP2B4、PRLH2和KCNF1A。GO术语的富集分析表明,所鉴定的DMRs中的基因在神经、生长和发育功能中起关键作用,这与该物种和属的淡水适应研究一致。使用早期研究的pool-seq数据,我们随后测试了在三个独立进化的淡水种群(包括这里研究的一个)中,这里发现的淡水鲥鱼的DMRs是否与可能在遗传选择下的基因组异常区域重叠。我们的分析表明,这里鉴定的DMRs在自然选择下广泛地落在基因组区域之外。然而,其中45%与DMRs中的CpG > TpG脱胺事件有关,这是一种与DNA甲基化密切相关的突变。我们的研究表明,遗传和表观遗传机制在该系统适应的初始阶段都很重要。它还支持了甲基化可能产生多态性从而促进适应性进化的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptation to Freshwater in Allis Shad Involved a Combination of Genomic and Epigenomic Changes.

Epigenetic modifications are one of the evolutionary mechanisms that allow individuals and populations to adapt to environmental changes. However, the relative importance of epigenetic versus genetic changes in adaptation and how they may interact remains poorly understood. Here, we investigate the role of DNA methylation in adaptation by studying a population of Allis shad (Alosa alosa) that evolved a completely freshwater life history approximately 70 years ago and the anadromous one that founded it. Using reduced representation bisulfite sequencing, we identified 227 differentially methylated regions (DMRs) between them, overlapping known important genes for freshwater adaptation, such as ATP2B4, PRLH2, and KCNF1A. Enrichment analysis of GO terms suggested that genes in the identified DMRs play key roles in neural, growth, and developmental functions, which is concordant with previous studies on adaptation to freshwater in this species and genus. Using pool-seq data from an earlier study, we then tested if the DMRs for freshwater shad found here overlapped genomic outlier regions that may be under genetic selection in three independently evolved, freshwater populations (including the one studied here). Our analysis showed that the DMRs identified here fall broadly outside genomic regions under natural selection. However, 45% of these were associated with CpG > TpG deamination events in DMRs, a mutation tightly linked with DNA methylation. Our study illustrates that both genetic and epigenetic mechanisms are important during the initial stages of adaptation in this system. It also supports the hypothesis that methylation may generate polymorphism that fuels adaptive evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信