Andre Szejner-Sigal, Britt J Heidinger, Aurelia C Kucera, Jeffrey D Kittilson, Alex S Torson, Joseph P Rinehart, George D Yocum, Julia H Bowsher, Kendra J Greenlee
{"title":"低氧延长了独居蜜蜂的寿命,但不改变端粒长度或氧化应激(Megachile rotundata)。","authors":"Andre Szejner-Sigal, Britt J Heidinger, Aurelia C Kucera, Jeffrey D Kittilson, Alex S Torson, Joseph P Rinehart, George D Yocum, Julia H Bowsher, Kendra J Greenlee","doi":"10.1242/jeb.250500","DOIUrl":null,"url":null,"abstract":"<p><p>Stress can influence lifespan in both positive and negative ways, depending on exposure intensity and duration. However, mechanisms driving positive stress effects on lifespan remain poorly understood. Prolonged hypoxia extends the lifespan of overwintering prepupal Megachile rotundata. Here, we explored telomere length and reduced oxidative stress as potential mechanisms of this extended lifespan. We hypothesized high antioxidant capacity under hypoxia reduces oxidative damage and telomere loss. We exposed prepupae to 10%, 21% or 24% oxygen for up to 9 months and measured monthly survival, telomere length, antioxidant capacity and lipid peroxidation across treatment duration for prepupae and adults. After 9 months of exposure, survival was highest in hypoxia and lowest in hyperoxia. Telomere length did not differ among oxygen treatments but increased in adults compared with prepupae. Total antioxidant capacity and lipid peroxidation showed no significant differences among oxygen treatments, suggesting compensatory responses to maintain baseline oxidative levels.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211587/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hypoxia extends lifespan but does not alter telomere length or oxidative stress in a solitary bee (Megachile rotundata).\",\"authors\":\"Andre Szejner-Sigal, Britt J Heidinger, Aurelia C Kucera, Jeffrey D Kittilson, Alex S Torson, Joseph P Rinehart, George D Yocum, Julia H Bowsher, Kendra J Greenlee\",\"doi\":\"10.1242/jeb.250500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stress can influence lifespan in both positive and negative ways, depending on exposure intensity and duration. However, mechanisms driving positive stress effects on lifespan remain poorly understood. Prolonged hypoxia extends the lifespan of overwintering prepupal Megachile rotundata. Here, we explored telomere length and reduced oxidative stress as potential mechanisms of this extended lifespan. We hypothesized high antioxidant capacity under hypoxia reduces oxidative damage and telomere loss. We exposed prepupae to 10%, 21% or 24% oxygen for up to 9 months and measured monthly survival, telomere length, antioxidant capacity and lipid peroxidation across treatment duration for prepupae and adults. After 9 months of exposure, survival was highest in hypoxia and lowest in hyperoxia. Telomere length did not differ among oxygen treatments but increased in adults compared with prepupae. Total antioxidant capacity and lipid peroxidation showed no significant differences among oxygen treatments, suggesting compensatory responses to maintain baseline oxidative levels.</p>\",\"PeriodicalId\":15786,\"journal\":{\"name\":\"Journal of Experimental Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211587/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.250500\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.250500","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Hypoxia extends lifespan but does not alter telomere length or oxidative stress in a solitary bee (Megachile rotundata).
Stress can influence lifespan in both positive and negative ways, depending on exposure intensity and duration. However, mechanisms driving positive stress effects on lifespan remain poorly understood. Prolonged hypoxia extends the lifespan of overwintering prepupal Megachile rotundata. Here, we explored telomere length and reduced oxidative stress as potential mechanisms of this extended lifespan. We hypothesized high antioxidant capacity under hypoxia reduces oxidative damage and telomere loss. We exposed prepupae to 10%, 21% or 24% oxygen for up to 9 months and measured monthly survival, telomere length, antioxidant capacity and lipid peroxidation across treatment duration for prepupae and adults. After 9 months of exposure, survival was highest in hypoxia and lowest in hyperoxia. Telomere length did not differ among oxygen treatments but increased in adults compared with prepupae. Total antioxidant capacity and lipid peroxidation showed no significant differences among oxygen treatments, suggesting compensatory responses to maintain baseline oxidative levels.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.