Xingyu Tao, Jialian Wang, Yuan Yan, Peifeng Cheng, Bin Liu, Huimin Du, Bailin Niu
{"title":"纯化具有增强增殖和分化潜力的小鼠脂肪源性间充质干细胞的最佳sca -1程序。","authors":"Xingyu Tao, Jialian Wang, Yuan Yan, Peifeng Cheng, Bin Liu, Huimin Du, Bailin Niu","doi":"10.3389/fcell.2025.1566670","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Adipose-derived mesenchymal stem cells (ADSCs) are promising candidates for mesenchymal stem cell (MSC) therapy due to their ease of isolation from the stromal vascular fraction (SVF) of adipose tissue. However, traditional isolation methods often result in mouse ADSCs with low purity and significant heterogeneity contributing to inconsistencies in results from preclinical and clinical studies. This is partly attributed to the lack of consensus on their surface markers.</p><p><strong>Methods: </strong>This study compared three purification methods for isolating mouse ADSCs based on Sca-1 positivity-direct adherence (ADSC-A), magnetic cell sorting followed by adherence (ADSC-M), and adherence to the third generation followed by magnetic cell sorting (ADSC-AM). Third-generation ADSCs were evaluated for proliferative activity, differentiation potential, and functional enrichment using proliferation assays, trilineage differentiation assays, and RNA sequencing. Flow cytometry was employed to assess Sca-1 positivity and the expression of positive (CD44, CD90, CD29) and negative markers (CD31, CD45) in the fourth-generation ADSCs.</p><p><strong>Results: </strong>Among the three methods, ADSC-AM exhibited superior properties, including uniform morphology, enhanced proliferation, and over 95% expression of Sca-1 and CD29. While all methods supported trilineage differentiation, ADSC-AM demonstrated enhanced adipogenesis. Furthermore, RNA sequencing and pathway enrichment analysis revealed that ADSC-AM possessed unique potential in angiogenesis and immune regulation.</p><p><strong>Discussion: </strong>These findings suggest that the ADSC-AM method offers a simple and reproducible approach for obtaining high-purity mouse ADSCs with better functional properties and provide a fundamental reference for understanding mouse ADSCs surface marker profiles.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1566670"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122437/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimal Sca-1-based procedure for purifying mouse adipose-derived mesenchymal stem cells with enhanced proliferative and differentiation potential.\",\"authors\":\"Xingyu Tao, Jialian Wang, Yuan Yan, Peifeng Cheng, Bin Liu, Huimin Du, Bailin Niu\",\"doi\":\"10.3389/fcell.2025.1566670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Adipose-derived mesenchymal stem cells (ADSCs) are promising candidates for mesenchymal stem cell (MSC) therapy due to their ease of isolation from the stromal vascular fraction (SVF) of adipose tissue. However, traditional isolation methods often result in mouse ADSCs with low purity and significant heterogeneity contributing to inconsistencies in results from preclinical and clinical studies. This is partly attributed to the lack of consensus on their surface markers.</p><p><strong>Methods: </strong>This study compared three purification methods for isolating mouse ADSCs based on Sca-1 positivity-direct adherence (ADSC-A), magnetic cell sorting followed by adherence (ADSC-M), and adherence to the third generation followed by magnetic cell sorting (ADSC-AM). Third-generation ADSCs were evaluated for proliferative activity, differentiation potential, and functional enrichment using proliferation assays, trilineage differentiation assays, and RNA sequencing. Flow cytometry was employed to assess Sca-1 positivity and the expression of positive (CD44, CD90, CD29) and negative markers (CD31, CD45) in the fourth-generation ADSCs.</p><p><strong>Results: </strong>Among the three methods, ADSC-AM exhibited superior properties, including uniform morphology, enhanced proliferation, and over 95% expression of Sca-1 and CD29. While all methods supported trilineage differentiation, ADSC-AM demonstrated enhanced adipogenesis. Furthermore, RNA sequencing and pathway enrichment analysis revealed that ADSC-AM possessed unique potential in angiogenesis and immune regulation.</p><p><strong>Discussion: </strong>These findings suggest that the ADSC-AM method offers a simple and reproducible approach for obtaining high-purity mouse ADSCs with better functional properties and provide a fundamental reference for understanding mouse ADSCs surface marker profiles.</p>\",\"PeriodicalId\":12448,\"journal\":{\"name\":\"Frontiers in Cell and Developmental Biology\",\"volume\":\"13 \",\"pages\":\"1566670\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122437/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Cell and Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fcell.2025.1566670\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1566670","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Optimal Sca-1-based procedure for purifying mouse adipose-derived mesenchymal stem cells with enhanced proliferative and differentiation potential.
Introduction: Adipose-derived mesenchymal stem cells (ADSCs) are promising candidates for mesenchymal stem cell (MSC) therapy due to their ease of isolation from the stromal vascular fraction (SVF) of adipose tissue. However, traditional isolation methods often result in mouse ADSCs with low purity and significant heterogeneity contributing to inconsistencies in results from preclinical and clinical studies. This is partly attributed to the lack of consensus on their surface markers.
Methods: This study compared three purification methods for isolating mouse ADSCs based on Sca-1 positivity-direct adherence (ADSC-A), magnetic cell sorting followed by adherence (ADSC-M), and adherence to the third generation followed by magnetic cell sorting (ADSC-AM). Third-generation ADSCs were evaluated for proliferative activity, differentiation potential, and functional enrichment using proliferation assays, trilineage differentiation assays, and RNA sequencing. Flow cytometry was employed to assess Sca-1 positivity and the expression of positive (CD44, CD90, CD29) and negative markers (CD31, CD45) in the fourth-generation ADSCs.
Results: Among the three methods, ADSC-AM exhibited superior properties, including uniform morphology, enhanced proliferation, and over 95% expression of Sca-1 and CD29. While all methods supported trilineage differentiation, ADSC-AM demonstrated enhanced adipogenesis. Furthermore, RNA sequencing and pathway enrichment analysis revealed that ADSC-AM possessed unique potential in angiogenesis and immune regulation.
Discussion: These findings suggest that the ADSC-AM method offers a simple and reproducible approach for obtaining high-purity mouse ADSCs with better functional properties and provide a fundamental reference for understanding mouse ADSCs surface marker profiles.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.