Abdoul Jalil Djiberou Mahamadou, Emma A Rodrigues, Vasily Vakorin, Violaine Antoine, Sylvain Moreno
{"title":"用于精确认知老化的可解释机器学习。","authors":"Abdoul Jalil Djiberou Mahamadou, Emma A Rodrigues, Vasily Vakorin, Violaine Antoine, Sylvain Moreno","doi":"10.3389/fncom.2025.1560064","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Machine performance has surpassed human capabilities in various tasks, yet the opacity of complex models limits their adoption in critical fields such as healthcare. Explainable AI (XAI) has emerged to address this by enhancing transparency and trust in AI decision-making. However, a persistent gap exists between interpretability and performance, as black-box models, such as deep neural networks, often outperform white-box models, such as regression-based approaches. To bridge this gap, the Explainable Boosting Machine (EBM), a class of generalized additive models has been introduced, combining the strengths of interpretable and high-performing models. EBM may be particularly well-suited for cognitive health research, where traditional models struggle to capture nonlinear effects in cognitive aging and account for inter- and intra-individual variability.</p><p><strong>Methods: </strong>This cross-sectional study applies EBM to investigate the relationship between demographic, environmental, and lifestyle factors, and cognitive performance in a sample of 3,482 healthy older adults. The EBM's performance is compared against Logistic Regression, Support Vector Machines, Random Forests, Multilayer Perceptron, and Extreme Gradient Boosting, evaluating predictive accuracy and interpretability.</p><p><strong>Results: </strong>The findings reveal that EBM provides valuable insights into cognitive aging, surpassing traditional models while maintaining competitive accuracy with more complex machine learning approaches. Notably, EBM highlights variations in how lifestyle activities impact cognitive performance, particularly differences between engaging in and refraining from specific activities, challenging regression-based assumptions. Moreover, our results show that the effects of lifestyle factors are heterogeneous across cognitive groups, with some individuals demonstrating significant cognitive changes while others remain resilient to these influences.</p><p><strong>Discussion: </strong>These findings highlight EBM's potential in cognitive aging research, offering both interpretability and accuracy to inform personalized strategies for mitigating cognitive decline. By bridging the gap between explainability and performance, this study advances the use of XAI in healthcare and cognitive aging research.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1560064"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122752/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interpretable machine learning for precision cognitive aging.\",\"authors\":\"Abdoul Jalil Djiberou Mahamadou, Emma A Rodrigues, Vasily Vakorin, Violaine Antoine, Sylvain Moreno\",\"doi\":\"10.3389/fncom.2025.1560064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Machine performance has surpassed human capabilities in various tasks, yet the opacity of complex models limits their adoption in critical fields such as healthcare. Explainable AI (XAI) has emerged to address this by enhancing transparency and trust in AI decision-making. However, a persistent gap exists between interpretability and performance, as black-box models, such as deep neural networks, often outperform white-box models, such as regression-based approaches. To bridge this gap, the Explainable Boosting Machine (EBM), a class of generalized additive models has been introduced, combining the strengths of interpretable and high-performing models. EBM may be particularly well-suited for cognitive health research, where traditional models struggle to capture nonlinear effects in cognitive aging and account for inter- and intra-individual variability.</p><p><strong>Methods: </strong>This cross-sectional study applies EBM to investigate the relationship between demographic, environmental, and lifestyle factors, and cognitive performance in a sample of 3,482 healthy older adults. The EBM's performance is compared against Logistic Regression, Support Vector Machines, Random Forests, Multilayer Perceptron, and Extreme Gradient Boosting, evaluating predictive accuracy and interpretability.</p><p><strong>Results: </strong>The findings reveal that EBM provides valuable insights into cognitive aging, surpassing traditional models while maintaining competitive accuracy with more complex machine learning approaches. Notably, EBM highlights variations in how lifestyle activities impact cognitive performance, particularly differences between engaging in and refraining from specific activities, challenging regression-based assumptions. Moreover, our results show that the effects of lifestyle factors are heterogeneous across cognitive groups, with some individuals demonstrating significant cognitive changes while others remain resilient to these influences.</p><p><strong>Discussion: </strong>These findings highlight EBM's potential in cognitive aging research, offering both interpretability and accuracy to inform personalized strategies for mitigating cognitive decline. By bridging the gap between explainability and performance, this study advances the use of XAI in healthcare and cognitive aging research.</p>\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":\"19 \",\"pages\":\"1560064\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122752/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2025.1560064\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1560064","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Interpretable machine learning for precision cognitive aging.
Introduction: Machine performance has surpassed human capabilities in various tasks, yet the opacity of complex models limits their adoption in critical fields such as healthcare. Explainable AI (XAI) has emerged to address this by enhancing transparency and trust in AI decision-making. However, a persistent gap exists between interpretability and performance, as black-box models, such as deep neural networks, often outperform white-box models, such as regression-based approaches. To bridge this gap, the Explainable Boosting Machine (EBM), a class of generalized additive models has been introduced, combining the strengths of interpretable and high-performing models. EBM may be particularly well-suited for cognitive health research, where traditional models struggle to capture nonlinear effects in cognitive aging and account for inter- and intra-individual variability.
Methods: This cross-sectional study applies EBM to investigate the relationship between demographic, environmental, and lifestyle factors, and cognitive performance in a sample of 3,482 healthy older adults. The EBM's performance is compared against Logistic Regression, Support Vector Machines, Random Forests, Multilayer Perceptron, and Extreme Gradient Boosting, evaluating predictive accuracy and interpretability.
Results: The findings reveal that EBM provides valuable insights into cognitive aging, surpassing traditional models while maintaining competitive accuracy with more complex machine learning approaches. Notably, EBM highlights variations in how lifestyle activities impact cognitive performance, particularly differences between engaging in and refraining from specific activities, challenging regression-based assumptions. Moreover, our results show that the effects of lifestyle factors are heterogeneous across cognitive groups, with some individuals demonstrating significant cognitive changes while others remain resilient to these influences.
Discussion: These findings highlight EBM's potential in cognitive aging research, offering both interpretability and accuracy to inform personalized strategies for mitigating cognitive decline. By bridging the gap between explainability and performance, this study advances the use of XAI in healthcare and cognitive aging research.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro