当耐药突变率不同时,最佳抗菌药物剂量组合。

IF 2.6 2区 环境科学与生态学 Q2 ECOLOGY
Evolution Pub Date : 2025-06-02 DOI:10.1093/evolut/qpaf123
Oscar Delaney, Andrew D Letten, Jan Engelstädter
{"title":"当耐药突变率不同时,最佳抗菌药物剂量组合。","authors":"Oscar Delaney, Andrew D Letten, Jan Engelstädter","doi":"10.1093/evolut/qpaf123","DOIUrl":null,"url":null,"abstract":"<p><p>Given the ongoing antimicrobial resistance crisis, it is imperative to develop dosing regimens optimised to avoid the evolution of resistance. The rate at which bacteria acquire resistance-conferring mutations to different antimicrobial drugs spans multiple orders of magnitude. By using a mathematical model and computer simulations, we show that knowledge of relative mutation rates can meaningfully inform the optimal combination of two drugs in a treatment regimen. We demonstrate that under plausible assumptions there is a linear relationship in log-log space between the drug A:drug B dose ratio that maximises the chance of treatment success and the ratio of their mutation rates. This power law relationship holds for bacteriostatic and bactericidal drugs. If borne out empirically, these findings suggest there might be significant room to further optimise antimicrobial dosing strategies.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal antimicrobial dosing combinations when drug-resistance mutation rates differ.\",\"authors\":\"Oscar Delaney, Andrew D Letten, Jan Engelstädter\",\"doi\":\"10.1093/evolut/qpaf123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given the ongoing antimicrobial resistance crisis, it is imperative to develop dosing regimens optimised to avoid the evolution of resistance. The rate at which bacteria acquire resistance-conferring mutations to different antimicrobial drugs spans multiple orders of magnitude. By using a mathematical model and computer simulations, we show that knowledge of relative mutation rates can meaningfully inform the optimal combination of two drugs in a treatment regimen. We demonstrate that under plausible assumptions there is a linear relationship in log-log space between the drug A:drug B dose ratio that maximises the chance of treatment success and the ratio of their mutation rates. This power law relationship holds for bacteriostatic and bactericidal drugs. If borne out empirically, these findings suggest there might be significant room to further optimise antimicrobial dosing strategies.</p>\",\"PeriodicalId\":12082,\"journal\":{\"name\":\"Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/evolut/qpaf123\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpaf123","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

鉴于持续存在的抗菌素耐药性危机,必须制定优化的给药方案,以避免耐药性的演变。细菌获得对不同抗微生物药物具有耐药性的突变的速率跨越了多个数量级。通过使用数学模型和计算机模拟,我们表明相对突变率的知识可以有意义地告知两种药物在治疗方案中的最佳组合。我们证明,在合理的假设下,药物a:药物B的剂量比与它们的突变率之比在对数-对数空间中存在线性关系,该关系最大化了治疗成功的机会。这种幂律关系适用于抑菌和杀菌药物。如果从经验上证实,这些发现表明可能有进一步优化抗菌药物剂量策略的巨大空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal antimicrobial dosing combinations when drug-resistance mutation rates differ.

Given the ongoing antimicrobial resistance crisis, it is imperative to develop dosing regimens optimised to avoid the evolution of resistance. The rate at which bacteria acquire resistance-conferring mutations to different antimicrobial drugs spans multiple orders of magnitude. By using a mathematical model and computer simulations, we show that knowledge of relative mutation rates can meaningfully inform the optimal combination of two drugs in a treatment regimen. We demonstrate that under plausible assumptions there is a linear relationship in log-log space between the drug A:drug B dose ratio that maximises the chance of treatment success and the ratio of their mutation rates. This power law relationship holds for bacteriostatic and bactericidal drugs. If borne out empirically, these findings suggest there might be significant room to further optimise antimicrobial dosing strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信