Chi Long Chan , Divya Malia , Miguel Paez-Perez , Laurent Sagalowicz , Olivier Schafer , Robert V. Law , Nicholas J. Brooks , John M. Seddon
{"title":"α-生育酚(维生素E)对全水合二酰磷脂酰胆碱膜相行为的影响。","authors":"Chi Long Chan , Divya Malia , Miguel Paez-Perez , Laurent Sagalowicz , Olivier Schafer , Robert V. Law , Nicholas J. Brooks , John M. Seddon","doi":"10.1016/j.chemphyslip.2025.105507","DOIUrl":null,"url":null,"abstract":"<div><div>We report on the lyotropic phase behaviour of fully-hydrated mixtures of α-tocopherol (α-toc) with the unsaturated phospholipid dioleoyl phosphatidylcholine (DOPC), as studied by synchrotron small-angle x-ray diffraction. Increasing amounts of α-toc progressively swell the layer spacing of the fluid lamellar L<sub>α</sub> phase of DOPC, and then induce a transition to an inverse hexagonal H<sub>II</sub> phase. Low-resolution electron density profiles show that this increase is largely due to an increased thickness of the bilayer, with little change in the water layer thickness. In the range 30 – 50 mol% α-toc, additional weak low-angle peaks were observed, whose characteristic ratios are in agreement with the presence of swollen inverse bicontinuous cubic phases of spacegroups Im3m / Pn3m. This research has applications both in the biological field and for industrial product development. We show that the effect of α-toc addition in DOPC membranes has some similarities to that of cholesterol by stabilizing inverse curvature structures, which play crucial roles in cell division, membrane trafficking and endocytosis. Concerning industrial applications, the stabilization of inverted hexagonal (H<sub>II</sub>) and swollen bicontinuous cubic phases offers the opportunity to develop new delivery systems.</div></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"270 ","pages":"Article 105507"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of α-tocopherol (vitamin E) on the phase behaviour of fully-hydrated dioleoyl phosphatidylcholine membranes\",\"authors\":\"Chi Long Chan , Divya Malia , Miguel Paez-Perez , Laurent Sagalowicz , Olivier Schafer , Robert V. Law , Nicholas J. Brooks , John M. Seddon\",\"doi\":\"10.1016/j.chemphyslip.2025.105507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We report on the lyotropic phase behaviour of fully-hydrated mixtures of α-tocopherol (α-toc) with the unsaturated phospholipid dioleoyl phosphatidylcholine (DOPC), as studied by synchrotron small-angle x-ray diffraction. Increasing amounts of α-toc progressively swell the layer spacing of the fluid lamellar L<sub>α</sub> phase of DOPC, and then induce a transition to an inverse hexagonal H<sub>II</sub> phase. Low-resolution electron density profiles show that this increase is largely due to an increased thickness of the bilayer, with little change in the water layer thickness. In the range 30 – 50 mol% α-toc, additional weak low-angle peaks were observed, whose characteristic ratios are in agreement with the presence of swollen inverse bicontinuous cubic phases of spacegroups Im3m / Pn3m. This research has applications both in the biological field and for industrial product development. We show that the effect of α-toc addition in DOPC membranes has some similarities to that of cholesterol by stabilizing inverse curvature structures, which play crucial roles in cell division, membrane trafficking and endocytosis. Concerning industrial applications, the stabilization of inverted hexagonal (H<sub>II</sub>) and swollen bicontinuous cubic phases offers the opportunity to develop new delivery systems.</div></div>\",\"PeriodicalId\":275,\"journal\":{\"name\":\"Chemistry and Physics of Lipids\",\"volume\":\"270 \",\"pages\":\"Article 105507\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry and Physics of Lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000930842500043X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000930842500043X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The effect of α-tocopherol (vitamin E) on the phase behaviour of fully-hydrated dioleoyl phosphatidylcholine membranes
We report on the lyotropic phase behaviour of fully-hydrated mixtures of α-tocopherol (α-toc) with the unsaturated phospholipid dioleoyl phosphatidylcholine (DOPC), as studied by synchrotron small-angle x-ray diffraction. Increasing amounts of α-toc progressively swell the layer spacing of the fluid lamellar Lα phase of DOPC, and then induce a transition to an inverse hexagonal HII phase. Low-resolution electron density profiles show that this increase is largely due to an increased thickness of the bilayer, with little change in the water layer thickness. In the range 30 – 50 mol% α-toc, additional weak low-angle peaks were observed, whose characteristic ratios are in agreement with the presence of swollen inverse bicontinuous cubic phases of spacegroups Im3m / Pn3m. This research has applications both in the biological field and for industrial product development. We show that the effect of α-toc addition in DOPC membranes has some similarities to that of cholesterol by stabilizing inverse curvature structures, which play crucial roles in cell division, membrane trafficking and endocytosis. Concerning industrial applications, the stabilization of inverted hexagonal (HII) and swollen bicontinuous cubic phases offers the opportunity to develop new delivery systems.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.