Kuakua Lu, Qijing Wang, Zhonglin Zhang, Xinglong Ren, Ian E Jacobs, Jingsi Qiao, Yi Shi, Yun Li, Henning Sirringhaus
{"title":"非对称分子半导体中具有器件内可调性的无序诱导定位。","authors":"Kuakua Lu, Qijing Wang, Zhonglin Zhang, Xinglong Ren, Ian E Jacobs, Jingsi Qiao, Yi Shi, Yun Li, Henning Sirringhaus","doi":"10.1002/smtd.202500589","DOIUrl":null,"url":null,"abstract":"<p><p>High-mobility organic semiconductors (OSCs) can potentially exhibit metallic carrier behaviors, and electron correlation-driven metal-insulator transition (MIT) has also been realized by tuning the carrier density. However, continuous Anderson transition has rarely been reported in OSCs, due to the difficulty of controllable disorder introduction and localization length tunability. Here we report a strategy of on-device disorder introduction in asymmetric molecular semiconductors that allows the realization of tunable carrier localization and Anderson MIT without a structural phase transition. The disorder can be introduced finely by co-regulating temperature and electric fields to obtain various disorder levels. The effectiveness of this strategy is further confirmed by the calculation of localization length and mean free path, both decreasing with the increased disorder level. This work provides an ideal testbed to investigate the nontrivial interplay of carrier transport property and disorder in disordered organic systems.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500589"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disorder-Induced Localization With on-Device Tunability in Asymmetric Molecular Semiconductors.\",\"authors\":\"Kuakua Lu, Qijing Wang, Zhonglin Zhang, Xinglong Ren, Ian E Jacobs, Jingsi Qiao, Yi Shi, Yun Li, Henning Sirringhaus\",\"doi\":\"10.1002/smtd.202500589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-mobility organic semiconductors (OSCs) can potentially exhibit metallic carrier behaviors, and electron correlation-driven metal-insulator transition (MIT) has also been realized by tuning the carrier density. However, continuous Anderson transition has rarely been reported in OSCs, due to the difficulty of controllable disorder introduction and localization length tunability. Here we report a strategy of on-device disorder introduction in asymmetric molecular semiconductors that allows the realization of tunable carrier localization and Anderson MIT without a structural phase transition. The disorder can be introduced finely by co-regulating temperature and electric fields to obtain various disorder levels. The effectiveness of this strategy is further confirmed by the calculation of localization length and mean free path, both decreasing with the increased disorder level. This work provides an ideal testbed to investigate the nontrivial interplay of carrier transport property and disorder in disordered organic systems.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2500589\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202500589\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500589","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Disorder-Induced Localization With on-Device Tunability in Asymmetric Molecular Semiconductors.
High-mobility organic semiconductors (OSCs) can potentially exhibit metallic carrier behaviors, and electron correlation-driven metal-insulator transition (MIT) has also been realized by tuning the carrier density. However, continuous Anderson transition has rarely been reported in OSCs, due to the difficulty of controllable disorder introduction and localization length tunability. Here we report a strategy of on-device disorder introduction in asymmetric molecular semiconductors that allows the realization of tunable carrier localization and Anderson MIT without a structural phase transition. The disorder can be introduced finely by co-regulating temperature and electric fields to obtain various disorder levels. The effectiveness of this strategy is further confirmed by the calculation of localization length and mean free path, both decreasing with the increased disorder level. This work provides an ideal testbed to investigate the nontrivial interplay of carrier transport property and disorder in disordered organic systems.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.