用于头颈癌研究的三维血管化肿瘤球体微流控平台:新见解。

IF 3.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Jooin Bang, Jiyoung Yeo, Su Ji Lee, Hansol Lee, Jinyoung Kim, Sohyeon Jeong, Eeseul Kang, Hoon Suk Rho, YongTae Kim, Jun-Ook Park
{"title":"用于头颈癌研究的三维血管化肿瘤球体微流控平台:新见解。","authors":"Jooin Bang, Jiyoung Yeo, Su Ji Lee, Hansol Lee, Jinyoung Kim, Sohyeon Jeong, Eeseul Kang, Hoon Suk Rho, YongTae Kim, Jun-Ook Park","doi":"10.1007/s10544-025-00748-z","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional in vitro cancer models often fail to replicate the complexity of the tumor microenvironment. We have developed a 3D micro-engineered vascularized organoid chip (VOC) platform to enhance the physiological relevance of in vivo tumor models. This platform incorporates patient-derived tumor spheroids from head and neck cancer patients, providing a more accurate simulation of the native tumor microenvironment. We evaluated the efficacy of 5-fluorouracil (5-FU) and sunitinib on angiogenic sprouting and cell viability of red fluorescent protein-expressing human umbilical vein endothelial cells (RFP-HUVECs) and head and neck cancer patient-derived tumor spheroids cultured in the VOC platform. A 3D micro-engineered VOC platform was developed to provide a physiologically relevant environment for RFP-HUVECs and head and neck cancer patient-derived tumor spheroids. Cellular responses to 5-FU and sunitinib were examined over 14 days, focusing on interactions and behavior in the VOC setup. 5-FU and sunitinib significantly inhibited angiogenic sprouting and reduced cell viability. Notably, these drugs induced changes in cellular network formation and disrupted the structural integrity of patient-derived spheroids, emphasizing the effectiveness of these drugs in a model that closely simulates the tumor microenvironment of head and neck cancer. Our study demonstrates the potential of the 3D vascularized tumor spheroid microfluidic chip as a valuable tool for personalized treatment and investigation of head and neck squamous cell carcinoma. This platform simulates the tumor microenvironment and offers exceptional precision in evaluating drug efficacy.</p>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 2","pages":"25"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 3D vascularized tumor spheroid microfluidic platform for head and neck cancer research: new insights.\",\"authors\":\"Jooin Bang, Jiyoung Yeo, Su Ji Lee, Hansol Lee, Jinyoung Kim, Sohyeon Jeong, Eeseul Kang, Hoon Suk Rho, YongTae Kim, Jun-Ook Park\",\"doi\":\"10.1007/s10544-025-00748-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional in vitro cancer models often fail to replicate the complexity of the tumor microenvironment. We have developed a 3D micro-engineered vascularized organoid chip (VOC) platform to enhance the physiological relevance of in vivo tumor models. This platform incorporates patient-derived tumor spheroids from head and neck cancer patients, providing a more accurate simulation of the native tumor microenvironment. We evaluated the efficacy of 5-fluorouracil (5-FU) and sunitinib on angiogenic sprouting and cell viability of red fluorescent protein-expressing human umbilical vein endothelial cells (RFP-HUVECs) and head and neck cancer patient-derived tumor spheroids cultured in the VOC platform. A 3D micro-engineered VOC platform was developed to provide a physiologically relevant environment for RFP-HUVECs and head and neck cancer patient-derived tumor spheroids. Cellular responses to 5-FU and sunitinib were examined over 14 days, focusing on interactions and behavior in the VOC setup. 5-FU and sunitinib significantly inhibited angiogenic sprouting and reduced cell viability. Notably, these drugs induced changes in cellular network formation and disrupted the structural integrity of patient-derived spheroids, emphasizing the effectiveness of these drugs in a model that closely simulates the tumor microenvironment of head and neck cancer. Our study demonstrates the potential of the 3D vascularized tumor spheroid microfluidic chip as a valuable tool for personalized treatment and investigation of head and neck squamous cell carcinoma. This platform simulates the tumor microenvironment and offers exceptional precision in evaluating drug efficacy.</p>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"27 2\",\"pages\":\"25\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10544-025-00748-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10544-025-00748-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统的体外肿瘤模型往往无法复制肿瘤微环境的复杂性。我们开发了一种三维微工程血管化类器官芯片(VOC)平台,以增强体内肿瘤模型的生理相关性。该平台结合了来自头颈部癌症患者的患者源性肿瘤球体,提供了更准确的原生肿瘤微环境模拟。我们评估了5-氟尿嘧啶(5-FU)和舒尼替尼对表达红色荧光蛋白的人脐静脉内皮细胞(RFP-HUVECs)和头颈癌患者源性肿瘤球体在VOC平台培养的血管生成发芽和细胞活力的影响。开发了一个3D微工程VOC平台,为RFP-HUVECs和头颈癌患者源性肿瘤球体提供生理相关环境。对5-FU和舒尼替尼的细胞反应进行了14天的检查,重点是在VOC设置中的相互作用和行为。5-FU和舒尼替尼显著抑制血管生成芽和降低细胞活力。值得注意的是,这些药物诱导了细胞网络形成的改变,破坏了患者来源的球体的结构完整性,强调了这些药物在密切模拟头颈癌肿瘤微环境的模型中的有效性。我们的研究证明了三维血管化肿瘤球体微流控芯片作为头颈部鳞状细胞癌个性化治疗和研究的宝贵工具的潜力。该平台模拟肿瘤微环境,在评估药物疗效方面提供了卓越的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 3D vascularized tumor spheroid microfluidic platform for head and neck cancer research: new insights.

Conventional in vitro cancer models often fail to replicate the complexity of the tumor microenvironment. We have developed a 3D micro-engineered vascularized organoid chip (VOC) platform to enhance the physiological relevance of in vivo tumor models. This platform incorporates patient-derived tumor spheroids from head and neck cancer patients, providing a more accurate simulation of the native tumor microenvironment. We evaluated the efficacy of 5-fluorouracil (5-FU) and sunitinib on angiogenic sprouting and cell viability of red fluorescent protein-expressing human umbilical vein endothelial cells (RFP-HUVECs) and head and neck cancer patient-derived tumor spheroids cultured in the VOC platform. A 3D micro-engineered VOC platform was developed to provide a physiologically relevant environment for RFP-HUVECs and head and neck cancer patient-derived tumor spheroids. Cellular responses to 5-FU and sunitinib were examined over 14 days, focusing on interactions and behavior in the VOC setup. 5-FU and sunitinib significantly inhibited angiogenic sprouting and reduced cell viability. Notably, these drugs induced changes in cellular network formation and disrupted the structural integrity of patient-derived spheroids, emphasizing the effectiveness of these drugs in a model that closely simulates the tumor microenvironment of head and neck cancer. Our study demonstrates the potential of the 3D vascularized tumor spheroid microfluidic chip as a valuable tool for personalized treatment and investigation of head and neck squamous cell carcinoma. This platform simulates the tumor microenvironment and offers exceptional precision in evaluating drug efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信