Lutfiyya Latief, Tarryn L. Botha, Annemariè Avenant-Oldewage
{"title":"探索银作为控制刚果巨轮象种群的替代处理方法","authors":"Lutfiyya Latief, Tarryn L. Botha, Annemariè Avenant-Oldewage","doi":"10.1155/are/8822090","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Monogeneans are ectoparasites that in high densities, can cause harm and even death to their hosts. Therefore, treatment methods are continuously evaluated. The current study aims to determine the LC50 of ionic silver and silver-engineered nanomaterials (ENMs) (nAg) in the monogenean <i>Macrogyrodactylus congolensis</i> and report on the toxicological effects of silver on the parasite by using their behavioural response as an indicator. <i>Macrogyrodactylus congolensis</i> were exposed in vivo to a range of ionic Ag and nAg concentrations for 12 h in three water media (reverse osmosis [RO], borehole, and aged tap water). The LC10, LC20, and LC50 were determined using ToxRat Professional. Behaviour was assessed using low, medium, and high concentrations (calculated from the parasites LC50) of ionic silver and nAg in the different water media. Videos were recorded with a camera for 5-min periods at 0, 1, 3, 6, and 12 h intervals. The videos were analysed using Noldus EthoVision XT software. The results demonstrated significant increases in the acceleration of movement, body contact between parasites, the distance travelled, mobility, and swimming speed when exposed to increased concentrations of silver. Changes that have been observed are most likely in response to toxicological stress and neurological damage caused by silver. Furthermore, silver and RO water being the most toxic, and aged tap water is the most optimal water medium. Furthermore, parasites showed an increase in behavioural changes as exposure concentrations increased. Lower LCx values were recorded when parasites were exposed to the ionic Ag compared to the nAg in all water media, indicating that the ionic silver was more toxic to <i>M. congolensis</i> than nAg, which highlights the need for the safe development of nanotechnology.</p>\n </div>","PeriodicalId":8104,"journal":{"name":"Aquaculture Research","volume":"2025 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/are/8822090","citationCount":"0","resultStr":"{\"title\":\"Exploring Silver as an Alternative Treatment for Controlling Macrogyrodactylus congolensis Populations\",\"authors\":\"Lutfiyya Latief, Tarryn L. Botha, Annemariè Avenant-Oldewage\",\"doi\":\"10.1155/are/8822090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Monogeneans are ectoparasites that in high densities, can cause harm and even death to their hosts. Therefore, treatment methods are continuously evaluated. The current study aims to determine the LC50 of ionic silver and silver-engineered nanomaterials (ENMs) (nAg) in the monogenean <i>Macrogyrodactylus congolensis</i> and report on the toxicological effects of silver on the parasite by using their behavioural response as an indicator. <i>Macrogyrodactylus congolensis</i> were exposed in vivo to a range of ionic Ag and nAg concentrations for 12 h in three water media (reverse osmosis [RO], borehole, and aged tap water). The LC10, LC20, and LC50 were determined using ToxRat Professional. Behaviour was assessed using low, medium, and high concentrations (calculated from the parasites LC50) of ionic silver and nAg in the different water media. Videos were recorded with a camera for 5-min periods at 0, 1, 3, 6, and 12 h intervals. The videos were analysed using Noldus EthoVision XT software. The results demonstrated significant increases in the acceleration of movement, body contact between parasites, the distance travelled, mobility, and swimming speed when exposed to increased concentrations of silver. Changes that have been observed are most likely in response to toxicological stress and neurological damage caused by silver. Furthermore, silver and RO water being the most toxic, and aged tap water is the most optimal water medium. Furthermore, parasites showed an increase in behavioural changes as exposure concentrations increased. Lower LCx values were recorded when parasites were exposed to the ionic Ag compared to the nAg in all water media, indicating that the ionic silver was more toxic to <i>M. congolensis</i> than nAg, which highlights the need for the safe development of nanotechnology.</p>\\n </div>\",\"PeriodicalId\":8104,\"journal\":{\"name\":\"Aquaculture Research\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/are/8822090\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/are/8822090\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/are/8822090","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Exploring Silver as an Alternative Treatment for Controlling Macrogyrodactylus congolensis Populations
Monogeneans are ectoparasites that in high densities, can cause harm and even death to their hosts. Therefore, treatment methods are continuously evaluated. The current study aims to determine the LC50 of ionic silver and silver-engineered nanomaterials (ENMs) (nAg) in the monogenean Macrogyrodactylus congolensis and report on the toxicological effects of silver on the parasite by using their behavioural response as an indicator. Macrogyrodactylus congolensis were exposed in vivo to a range of ionic Ag and nAg concentrations for 12 h in three water media (reverse osmosis [RO], borehole, and aged tap water). The LC10, LC20, and LC50 were determined using ToxRat Professional. Behaviour was assessed using low, medium, and high concentrations (calculated from the parasites LC50) of ionic silver and nAg in the different water media. Videos were recorded with a camera for 5-min periods at 0, 1, 3, 6, and 12 h intervals. The videos were analysed using Noldus EthoVision XT software. The results demonstrated significant increases in the acceleration of movement, body contact between parasites, the distance travelled, mobility, and swimming speed when exposed to increased concentrations of silver. Changes that have been observed are most likely in response to toxicological stress and neurological damage caused by silver. Furthermore, silver and RO water being the most toxic, and aged tap water is the most optimal water medium. Furthermore, parasites showed an increase in behavioural changes as exposure concentrations increased. Lower LCx values were recorded when parasites were exposed to the ionic Ag compared to the nAg in all water media, indicating that the ionic silver was more toxic to M. congolensis than nAg, which highlights the need for the safe development of nanotechnology.
期刊介绍:
International in perspective, Aquaculture Research is published 12 times a year and specifically addresses research and reference needs of all working and studying within the many varied areas of aquaculture. The Journal regularly publishes papers on applied or scientific research relevant to freshwater, brackish, and marine aquaculture. It covers all aquatic organisms, floristic and faunistic, related directly or indirectly to human consumption. The journal also includes review articles, short communications and technical papers. Young scientists are particularly encouraged to submit short communications based on their own research.