{"title":"平面BV同胚的面积严格极限分类","authors":"Daniel Campbell, Aapo Kauranen, Emanuela Radici","doi":"10.1112/jlms.70172","DOIUrl":null,"url":null,"abstract":"<p>We present a classification of area-strict limits of planar <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mi>V</mi>\n </mrow>\n <annotation>$BV$</annotation>\n </semantics></math> homeomorphisms. This class of mappings allows for cavitations and fractures but fulfil a suitable generalisation of the INV condition of Müller and Spector (Arch. Rational Mech. Anal. <b>131</b> (1995), no. 1, 1–66). As pointed out by J. Ball, these features are expected in limit configurations of elastic deformations. De Philippis and Pratelli introduced the <i>no-crossing</i> condition which characterises the <span></span><math>\n <semantics>\n <msup>\n <mi>W</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <annotation>$W^{1,p}$</annotation>\n </semantics></math> closure of planar homeomorphisms. In the current paper, we show that a suitable version of this concept is equivalent with a map, <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math>, being the area-strict limit of BV homeomorphisms. This extends our results from Campbell et al. (J. Funct. Anal. <b>285</b> (2023), no. 3, Paper No. 109953, 30), where we proved that the <i>no-crossing BV</i> condition for a BV map was equivalent with the map being the m-strict limit of homeomorphisms (i.e. <span></span><math></math> and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n </mrow>\n <msub>\n <mi>D</mi>\n <mn>1</mn>\n </msub>\n <msub>\n <mi>f</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>|</mo>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n <mo>|</mo>\n </mrow>\n <msub>\n <mi>D</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>f</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>|</mo>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mo>|</mo>\n </mrow>\n <msub>\n <mi>D</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mi>f</mi>\n <mo>|</mo>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n <mo>|</mo>\n </mrow>\n <msub>\n <mi>D</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mi>f</mi>\n <mo>|</mo>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation>$|{D}_{1}{f}_{k}|(\\mathrm{\\Omega})+|{D}_{2}{f}_{k}|(\\mathrm{\\Omega})\\to |{D}_{1}f|(\\mathrm{\\Omega})+|{D}_{2}f|(\\mathrm{\\Omega})$</annotation>\n </semantics></math>). Further, we show that the <i>no-crossing BV</i> condition is equivalent with a seemingly stronger version of the same condition.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70172","citationCount":"0","resultStr":"{\"title\":\"Classification of area-strict limits of planar BV homeomorphisms\",\"authors\":\"Daniel Campbell, Aapo Kauranen, Emanuela Radici\",\"doi\":\"10.1112/jlms.70172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a classification of area-strict limits of planar <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>B</mi>\\n <mi>V</mi>\\n </mrow>\\n <annotation>$BV$</annotation>\\n </semantics></math> homeomorphisms. This class of mappings allows for cavitations and fractures but fulfil a suitable generalisation of the INV condition of Müller and Spector (Arch. Rational Mech. Anal. <b>131</b> (1995), no. 1, 1–66). As pointed out by J. Ball, these features are expected in limit configurations of elastic deformations. De Philippis and Pratelli introduced the <i>no-crossing</i> condition which characterises the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>W</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <annotation>$W^{1,p}$</annotation>\\n </semantics></math> closure of planar homeomorphisms. In the current paper, we show that a suitable version of this concept is equivalent with a map, <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math>, being the area-strict limit of BV homeomorphisms. This extends our results from Campbell et al. (J. Funct. Anal. <b>285</b> (2023), no. 3, Paper No. 109953, 30), where we proved that the <i>no-crossing BV</i> condition for a BV map was equivalent with the map being the m-strict limit of homeomorphisms (i.e. <span></span><math></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>|</mo>\\n </mrow>\\n <msub>\\n <mi>D</mi>\\n <mn>1</mn>\\n </msub>\\n <msub>\\n <mi>f</mi>\\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>|</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>+</mo>\\n <mo>|</mo>\\n </mrow>\\n <msub>\\n <mi>D</mi>\\n <mn>2</mn>\\n </msub>\\n <msub>\\n <mi>f</mi>\\n <mi>k</mi>\\n </msub>\\n <mrow>\\n <mo>|</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <mo>|</mo>\\n </mrow>\\n <msub>\\n <mi>D</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mi>f</mi>\\n <mo>|</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>+</mo>\\n <mo>|</mo>\\n </mrow>\\n <msub>\\n <mi>D</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mi>f</mi>\\n <mo>|</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation>$|{D}_{1}{f}_{k}|(\\\\mathrm{\\\\Omega})+|{D}_{2}{f}_{k}|(\\\\mathrm{\\\\Omega})\\\\to |{D}_{1}f|(\\\\mathrm{\\\\Omega})+|{D}_{2}f|(\\\\mathrm{\\\\Omega})$</annotation>\\n </semantics></math>). Further, we show that the <i>no-crossing BV</i> condition is equivalent with a seemingly stronger version of the same condition.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 6\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70172\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70172\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70172","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给出了平面BV$ BV$同胚的面积严格极限的分类。这类映射允许空化和断裂,但满足了m ller和Spector (Arch)的INV条件的适当推广。合理的机械。《论文集》,第131(1995)号。1 - 66)。正如J. Ball所指出的,这些特征在弹性变形的极限构型中是可以预料到的。De Philippis和Pratelli引入了平面同胚w1,p $W^{1,p}$闭包的无交叉条件。在本文中,我们证明了这个概念的一个合适的版本等价于映射f$ f$,它是BV同胚的面积严格限制。这扩展了坎贝尔等人的结果。285 (2023), no。3、论文编号:109953,30);其中我们证明了BV映射的不交叉BV条件是等价的,该映射是同胚的m严格极限(即和| d1 f k |(Ω) + | d2fk | (Ω)→| d1 f | (Ω) + |D 2 f|(Ω)$ |{D}_{1}{f}_{k}|(\mathrm{\Omega})+|{D}_{2}{f}_{k}|(\mathrm{\Omega})\到|{D}_{1}f|(\mathrm{\Omega})+|{D}_{2}f|(\mathrm{\Omega})$)。进一步,我们证明了无交叉BV条件与一个看起来更强的相同条件是等价的。
Classification of area-strict limits of planar BV homeomorphisms
We present a classification of area-strict limits of planar homeomorphisms. This class of mappings allows for cavitations and fractures but fulfil a suitable generalisation of the INV condition of Müller and Spector (Arch. Rational Mech. Anal. 131 (1995), no. 1, 1–66). As pointed out by J. Ball, these features are expected in limit configurations of elastic deformations. De Philippis and Pratelli introduced the no-crossing condition which characterises the closure of planar homeomorphisms. In the current paper, we show that a suitable version of this concept is equivalent with a map, , being the area-strict limit of BV homeomorphisms. This extends our results from Campbell et al. (J. Funct. Anal. 285 (2023), no. 3, Paper No. 109953, 30), where we proved that the no-crossing BV condition for a BV map was equivalent with the map being the m-strict limit of homeomorphisms (i.e. and ). Further, we show that the no-crossing BV condition is equivalent with a seemingly stronger version of the same condition.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.