Dong Xie;Jianhua Guo;Yu Jiang;Zhuoran Hou;Jintao Deng
{"title":"电动汽车的节能路径和速度规划:一个整合交通和道路信息的分层生态驾驶框架","authors":"Dong Xie;Jianhua Guo;Yu Jiang;Zhuoran Hou;Jintao Deng","doi":"10.1109/OJVT.2025.3562317","DOIUrl":null,"url":null,"abstract":"The growing demand for decarbonization, coupled with the development of intelligent transportation systems (ITS), has driven the emergence of eco-driving technologies for electric vehicles (EVs). However, existing eco-driving technologies rarely integrate path and velocity planning while neglecting macro traffic flow and environmental impacts, resulting in less practical and less precise planning outcomes. Therefore, this study proposes a hierarchical eco-driving model that establishes a high-dimensional system incorporating macro traffic flow, micro vehicle model, and road environments. First, a traffic network model is constructed based on the real road topology. Next, a high-precision vehicle energy consumption model and a database of typical driving cycles are established to calculate the edge costs of the road network. Then, an energy-efficient route is efficiently planned using the proposed multi-heuristic A* algorithm. Finally, based on the route information from the upper level, along with traffic, kinematic, and road information, a convex optimization algorithm is employed to achieve accurate and efficient velocity planning. Experimental results demonstrate that the proposed method computes in less than 2 s for most scenarios and can effectively save energy and time by over 10%. The proposed framework offers a new solution for eco-driving and has significant practical implications.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"1317-1332"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10970052","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficient Route and Velocity Planning for Electric Vehicles: A Hierarchical Eco-Driving Framework Integrating Traffic and Road Information\",\"authors\":\"Dong Xie;Jianhua Guo;Yu Jiang;Zhuoran Hou;Jintao Deng\",\"doi\":\"10.1109/OJVT.2025.3562317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing demand for decarbonization, coupled with the development of intelligent transportation systems (ITS), has driven the emergence of eco-driving technologies for electric vehicles (EVs). However, existing eco-driving technologies rarely integrate path and velocity planning while neglecting macro traffic flow and environmental impacts, resulting in less practical and less precise planning outcomes. Therefore, this study proposes a hierarchical eco-driving model that establishes a high-dimensional system incorporating macro traffic flow, micro vehicle model, and road environments. First, a traffic network model is constructed based on the real road topology. Next, a high-precision vehicle energy consumption model and a database of typical driving cycles are established to calculate the edge costs of the road network. Then, an energy-efficient route is efficiently planned using the proposed multi-heuristic A* algorithm. Finally, based on the route information from the upper level, along with traffic, kinematic, and road information, a convex optimization algorithm is employed to achieve accurate and efficient velocity planning. Experimental results demonstrate that the proposed method computes in less than 2 s for most scenarios and can effectively save energy and time by over 10%. The proposed framework offers a new solution for eco-driving and has significant practical implications.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":\"6 \",\"pages\":\"1317-1332\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10970052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10970052/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10970052/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Energy-Efficient Route and Velocity Planning for Electric Vehicles: A Hierarchical Eco-Driving Framework Integrating Traffic and Road Information
The growing demand for decarbonization, coupled with the development of intelligent transportation systems (ITS), has driven the emergence of eco-driving technologies for electric vehicles (EVs). However, existing eco-driving technologies rarely integrate path and velocity planning while neglecting macro traffic flow and environmental impacts, resulting in less practical and less precise planning outcomes. Therefore, this study proposes a hierarchical eco-driving model that establishes a high-dimensional system incorporating macro traffic flow, micro vehicle model, and road environments. First, a traffic network model is constructed based on the real road topology. Next, a high-precision vehicle energy consumption model and a database of typical driving cycles are established to calculate the edge costs of the road network. Then, an energy-efficient route is efficiently planned using the proposed multi-heuristic A* algorithm. Finally, based on the route information from the upper level, along with traffic, kinematic, and road information, a convex optimization algorithm is employed to achieve accurate and efficient velocity planning. Experimental results demonstrate that the proposed method computes in less than 2 s for most scenarios and can effectively save energy and time by over 10%. The proposed framework offers a new solution for eco-driving and has significant practical implications.